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Abstract 
 

Analysis of a large combat campaign using game theory is difficult due to non-

linearities and other soft factors which exist in a complex system.  However, game theory 

can give decision makers insight into strategies and outcomes that can be utilized to 

maximize one’s objective.  Agent-based simulation provides the means to model complex 

systems with non-linearities, by allowing for interactions among independent “agents.”  

This thesis investigates game-theoretic strategies in agent-based simulation, modeled 

after the Allied search for U-boats in the Bay of Biscay during World War II (WWII).  It 

also looks into the effects of adaptation on strategies by comparison to fixed-strategy 

results. 
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GAME THEORY AND U-BOATS IN THE 

BAY OF BISCAY 
 
 
 
 

I. Introduction 

 

1.1. General Issue 

Models have been consistently used by the military for a wide variety of 

applications.  Such applications range from acquisitions and force structuring, to 

capability analyses and combat.  Combat models are of primary interest to the military; 

they are used to analyze and investigate combat development, operations and training.  

However, no model is perfect and accurately reflects the “real world”; the greatest 

limitation of combat models is that they do not reflect complex or chaotic behaviors such 

as heroism, leadership, or morale. 

Recent advances in computing capability, the development of new computer 

language architectures, and a shift in thinking paradigms have resulted in the appearance 

of agent-based technology.  Agent-based architectures promote the modeling of complex 

systems, by enabling non-linearities and interactions to occur between independent, 

interacting “agents”.  Agent-based models can be applied to combat scenarios, and allow 

for complex behaviors to emerge, which were not possible to capture from traditional 

models.  Agent-based models are still relatively new, and must be rigorously examined to 

realize and understand their potential. 
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1.2. Background 

Models are physical, mathematical or logical representations of systems, possibly 

simplified in some way, to gain insight into how the system behaves, and even predict 

future behavior (Law, 2000:2).  Traditional models generally fall into one of the 

following categories: 1) physical models that deal with real-world objects; 2) analytical 

models, which are defined in terms of exact relationships and quantities and produce an 

exact result; 3) simulations, which are usually models of complex systems allowing the 

analysis of different input and output parameters (Law, 2000:4-5). 

Combat models are models, such as simulations, that reflect elements of military 

operations for investigative or management purposes.  Combat models are used by the 

military to aid in decision making and can affect force structure, budget allocation, 

acquisition of new systems, force deployment, tactics and strategy.  Such models 

generally fall into one of three categories: combat development, operations, and training.  

Combat development models are used to facilitate research and development in new 

technologies and new weapons systems.  Operations models provide understanding of the 

real world, through channels such as war planning, policy analysis, and historical 

analysis.  Finally, training models are employed to prepare military personnel and units 

for combat. 

The Department of Defense also classifies combat models into a hierarchy as shown 

in Figure 1.  Models are classified at the various levels depending on their scope of 

contribution.  The levels are: specialty, engagement, mission and campaign.  As one 

progresses up through the levels, the models become increasingly aggregate.  Models at 
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the specialty level are highly detailed, and include engineering models, individual combat 

systems or subsystems.  Engagement level models reflect the interactions between 

combat systems, such as one-on-one aircraft battles, and can deliver high levels of detail 

on the systems of interest. 

 

Figure 1.  Hierarchy of Models (Miller, 2002) 
 

Mission level models can simulate traditional combat (land, sea, and air) in a region 

or theater of operations for a short time period.  Most mission level model conflicts range 

from few-on-few to many versus many, and give insight into tactics, strategies, and other 

mission areas of interest such as command and control.  Finally, campaign level models 

simulate traditional combat in the region or theater over long periods of time.  Often, 

campaign models incorporate analyses of logistics and support systems, attrition, 

strategies and additional factors which may affect the ability to sustain wartime 

operations in a regional conflict. 
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There are drawbacks to using models in general, especially combat models and 

simulations.  One drawback is the inherent limitations of the model itself.  Traditional 

combat models are built around mathematical relationships, quantities, and logic.  Where 

they falter is in the capability to quantify factors that cannot be explicitly expressed, 

concepts such as leadership, courage, morale, and other human traits.  These models also 

display very little adaptability in two aspects.  First, the objects in the model cannot react 

and change to conditions beyond specifically encoded rules.  Second, the applicability of 

these models and their ability to function validly for alternate scenarios are restricted:   

A danger inherent in detailed, complicated computer simulations of combat is 
that they reflect current doctrine; their ability to intimate radically new tactics 
is limited (Hughes, 1984). 

As the military has evolved away from the traditional type of warfare into operations 

other than war, information warfare and space warfare, new types of models are 

desperately needed. 

A second drawback involves the interpretation of results.  Many people expect 

simulations to give the correct answer, or the way to accomplish various tasks.  Instead, 

decision makers must realize that models provide insight into how a system operates and 

the importance of various factors which are represented in the system, not predictions of 

an outcome.  This assumption about models and simulations has the potential to be very 

harmful, especially when the system contains human factors. 

The recent development of agent-based models has provided means to circumvent 

the aforementioned model limitations.  Agent-based models have demonstrated the 

capability to model non-linearities, interaction and chaotic elements, develop emergent 

and complex behaviors, and allow for adaptation within the system.  These characteristics 
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will benefit combat models and enable research into areas (with human behavioral and 

cognitive characteristics) not possible before.  The potential for these agent-based 

models, especially combat models, needs continued exploration, along with compatibility 

with applications of other techniques such as search theory and game theory. 

Game theory is the study of conflict, through which opposing players, their 

strategies and choices, and the possible conflict outcomes are examined.  Game theory 

has been used to study a variety of topics including economics, business, and politics.  

Additionally, game theory is a useful tool for analyzing combat and the methods by 

which opposing sides operate.  It is thus reasonable to investigate the combined impacts 

of game theory and agent-based modeling. 

 

1.3. Research Objective 

The objective of this research is to explore the effects of game theoretic strategies in 

a campaign model as embodied in an agent-based model.  German U-boat operations in 

the Bay of Biscay during World War II, and the subsequent Allied search efforts to 

counter these operations, provide the scenario for the agent-based simulation.  The model 

is designed using an object-oriented computer language, and guided by historical data.  

The results of the simulations are analyzed to determine the effects of different strategic 

scenarios on the effectiveness of hunting U-boats in the Bay of Biscay, and relating these 

results to historical perspectives. 
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1.4. Scope of Research 

This research examines the daytime versus nighttime searching strategies of the 

Allied air forces and the surfacing strategies of the U-boats represented in the model.  

Three different scenarios, ranging from fixed to adapting strategies, are constructed to 

compare results and validate game theoretically-based logical conclusions.  This research 

also investigates the development of resultant data landscapes, which are examined for 

potential game theoretic critical points. 

 

1.5. Overview of Thesis 

Chapter 2 of this document will provide a history of U-boat operations in the Bay of 

Biscay during World War II, and the antisubmarine search campaign conducted by the 

Allied air forces.  This chapter will also summarize a few previous analyses of this 

campaign.  Chapter 3 presents basic definitions on the topics of agent models, game 

theory, and search games, and reviews some of the published literature.  Chapter 4 is a 

description of the baseline agent model used for this project, and the relevant assumptions 

underlying the model.  Chapter 5 looks at the enhancements incorporated into the 

baseline model and sets up the methodology for three scenarios investigating game 

theoretic strategies.  Chapter 6 discusses the results of the simulations and presents an 

analysis of these results, and Chapter 7 outlines model and analytical limitations and 

potential future research in this topic area. 
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II. Background 

 

2.1. Bay of Biscay Scenario 

2.1.1. Historical Overview 

During World War II (WWII), the Germans were the first to effectively use the 

submarine against non-military targets, specifically against the logistical forces 

supporting the Allied war effort.  U-boats (from the German word for submarine, 

Unterseeboote) were, in fact, used primarily to sink Allied merchant ships crossing the 

Atlantic Ocean to re-supply the Allied forces in Europe.  For a period of time in 1943 and 

1944, the U-boat effort was so effective and devastating to the Allies that later Winston 

Churchill wrote that “the only thing that ever really frightened me during the war was the 

U-boat peril” (Churchill, 1949). 

From 1941 through 1944, U-boats operated out of captured ports on the western 

coast of France.  From these ports, the U-boats transited the Bay of Biscay to the Atlantic 

where they hunted convoy targets.  The Bay of Biscay is bordered on the east by France, 

to the south by Spain and Portugal, and in the north by Great Britain and Ireland (Figure 

2).  While departing from and returning to their ports in France, U-boats spent a 

significant amount of travel time in the Bay, as it provided the only access route to the 

Atlantic. 

It was in these waters that the Allies decided to concentrate their search effort in an 

offensive endeavor to counter the U-boat threat.  The Bay, with a few exceptions, was the 

only feasible area to conduct U-boat hunting operations.  The open waters of the Atlantic 

were simply too vast providing ample area for U-boats to navigate and hide.  The German 
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occupied ports in France were heavily defended and hardened against bomber attacks.  

Additionally, German fighter aircraft patrolled the skies over and around the ports, 

deterring direct attacks against the ports or attacks against U-boats in the coastal waters 

near France. 

 
Figure 2.  Map of the Bay of Biscay with Locations of U-Boat Sinkings 

(http://uboat.net/maps/biscay.htm) 
 

There were two exceptions to this policy: near the merchant convoys and at U-boat 

re-supply points in the Atlantic.  Escorting merchant convoys could only be 

accomplished close to Britain, within the range of the Allied aircraft.  This was not as 

effective as searching the Bay because U-boat captains generally engaged in attacking the 

convoy ships in the Atlantic before this point.  The decryption of the German radio code, 



 9

Enigma, by Allied intelligence allowed aircraft to locate and patrol several U-boat re-

supply points in the Atlantic.  A small portion of open-sea U-boat missions would meet 

with specially designed tanker U-boats to take on fuel and supplies thus extending their 

time in the Atlantic. 

Although it was the primary feasible search area for the Allies, the Bay of Biscay 

still contained roughly 130,000 square miles of potential search area.  The advantages the 

Allies gained by flying patrols here, however, made the effort worthwhile.  U-boats, as 

mentioned previously, were forced to transit the Bay to and from the ports in France.  

Thus, the U-boat density in the Bay was higher than in any other potential search area.  

Also, submersible technology at the time did not enable submarines to stay underwater 

indefinitely.  U-boat engines ran on two sources of power, diesel engines and batteries.  

Batteries only enabled the U-boat to travel approximately 100 nautical miles underwater 

before it was forced to surface for nearly three hours to recharge the batteries while 

operating under diesel power.  As a consequence, U-boats were forced to surface at some 

point during their transit of the Bay.  A surfaced U-boat was much easier to locate than a 

submerged U-boat. 

Between 1941 and 1944, Allied air forces vigorously patrolled the Bay.  Early on, 

the finding and “killing” of a U-boat was an infrequent event; however, as the 

development and implementation of new technologies such as radar progressed 

throughout the war, the Allied search forces became more adept at finding and sinking U-

boats.  To reduce passages through the Bay, the Germans employed the use of tanker U-

boats, modified to carry fuel and supplies to U-boats already in the Atlantic.  These 

tanker U-boats could re-supply up to ten U-boats, enabling each to spend another 30 days 
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at sea.  Without refueling, a U-boat could spend 30 days at sea; refueling thus effectively 

doubled their time (multiple refuelings were possible) in the Atlantic.  However, tanker 

U-boats were limited in number, and Allied air forces, recognizing them as a potent aid to 

the German effort, hunted tanker U-boats relentlessly. 

Returning to the ports in France, besides forcing U-boats to transit a patrolled Bay, 

was also dangerous as there was the risk that the U-boat may never put out to sea again.  

The German U-boat repair facilities were plagued with a lack of maintenance technicians 

and supplies, and efforts made by German leadership to correct these shortcomings 

ultimately failed.  Maintenance backlog grew throughout the war, and a U-boat returning 

from sea faced an increasing chance of spending the rest of the war in dry-dock waiting 

for repairs. 

2.1.2. Campaign Issues 

So what is the importance of the Bay of Biscay campaign?  This conflict between 

the Allied search aircraft and the avoiding German U-boats is rich with strategic and 

tactical decisions on both sides, driven predominantly by the state of technology and its 

progression.  Additionally, the field of operations research was born out of the Allied 

attempt at modeling the conflict and optimizing their search strategies. 

This campaign has been described as a technology “see-saw” or “tug-of-war” 

(McCue, 1990:8).  Until the Germans began outfitting the U-boats with snorkels, 

allowing them to stay underwater indefinitely, the technological focus was on the Allied 

use of radar for searching and the radar countermeasures employed by the U-boats. 

The result of technology battles forced larger tactical and strategic issues on both 

sides.  Since U-boats could not transit the entire Bay submerged, their issue was when, 
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and for how long, to surface.  U-boats traveled faster on the surface than underwater 

(average of 10 knots versus average of 2.5 knots), and less time spent in the Bay meant 

more time to operate in the Atlantic.  Increased surface exposure, however, increased the 

risk of being detected and destroyed by Allied aircraft.  Traveling underwater reduced 

their vulnerability, but greatly increased the transit time.  While surfacing at night was 

usually safer, a strategy of only surfacing at night would allow Allied search efforts to 

concentrate solely at night.  Finally, the use of countermeasures in the form of search 

receivers could give U-boats advance warning of approaching aircraft.  The downside 

was that a side effect from the use of these primitive search receivers was the broadcast 

of radio waves that Allied aircraft could detect and track. 

The Allied search forces were faced with similar issues: the time of day to search, 

where to search, and how often to search a given area with a limited set of resources.  

There was a vast difference in the effectiveness of day searching versus night searching.  

At one point in the campaign, it was calculated that the probability of killing a sighted 

U-boat during the day was approximately 40% while at night it was merely 11% 

(Waddington, 1973:201).  If Allied search effort were restricted to day searches, when 

Allied aircraft effectiveness was higher, the U-boats could capitalize by surfacing only at 

night.  Such were the game theoretic issues facing Allied decision makers during the war, 

and in particular this aspect of the war. 

 

2.2. Previous Analyses 

The first analysis of this Bay of Biscay campaign was written in 1946 shortly after 

WWII, but not cleared for publication until 1973.  In O.R. in World War 2, author C.H. 
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Waddington details the efforts of the Operational Research Section (O.R.S.) of the Royal 

Air Force Coastal Command in countering the U-boat threat.  His personal involvement 

in that effort provides firsthand insight of how various techniques were applied to the 

problem at hand to promote effective management decisions – hence operations research 

was born.  The book describes how the O.R.S. engaged a wide variety of topics, from 

radar to navigation issues to weather, altitude and attack methods, with a goal of 

demonstrating that “scientific methods of analysis might give useful assistance to 

effective executive action” (Waddington, 1973:xii). 

McCue (1990), re-examines the analyses that were accomplished during WWII, and 

in some cases completing them with modern techniques.  He addresses a wide range of 

issues from the technology “see-saw”, seasonal impact, and the concept of a balanced 

search effort.  McCue’s work shows that “one can quantify and analyze the campaign 

against the U-boats not merely by applying...“index numbers” and “coefficients based on 

sound military judgment”…but through mathematical reasoning systematically applied to 

knowable physical quantities” (McCue, 1990:2). 

 

2.3. So Why This Scenario? 

The Bay of Biscay campaign is useful as an agent-based model for several reasons.  

First, the amount of information available on the subject is immense.  Besides the first-

hand account analysis of Waddington and the later analysis of McCue, other sources, 

including Grand Admiral of Submarines Karl Dönitz’s War Diary, are accessible.  

Dönitz’s source is valuable as it gives insight into German U-boat strategies and tactics 

utilized in the Bay, as well as numbers for comparison.  This availability of information 
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lends itself to the development of a detailed model, and is also useful for the comparison 

of model results with historical results.  Second, the technological developments, and the 

tactical and strategic decisions necessitated by this campaign raise a lot of “what if?” 

questions.  These questions can be investigated by such a model with tradeoff analysis 

techniques.  And finally, the model of a historical campaign like this, which is essentially 

a type of predator/prey model, will easily transition to a variety of present-day scenarios 

for investigation.  Such scenarios include immigration, drug-running, smuggling, and 

terrorism, as well as some more traditional military operations. 
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III. Literature Review 

 

There are three key concepts incorporated into this project.  Each topic individually 

has a vast body of literature and discussion.  This chapter thus summarizes the 

fundamentals of each topic, their development and current applications.  Since the 

simulation program developed for this project is an agent-based simulation, this review 

begins with an assessment of agent-based modeling.  The objectives of the project center 

on the application of game theory to the agent-based model, therefore after a brief 

discussion on game theory, focus shifts to search games, game theory with search 

applications. 

 

3.1. Agent-Based Modeling 

Classical analysis techniques and models used in most simulations are largely 

grounded in linear systems.  Naturally, when it comes to the analysis of non-linear or 

complex systems, these linear systems are inadequate.  Non-linear systems are those in 

which certain characteristics of the system cannot be linearly decomposed into the 

characteristics of the system’s components.  In other words, the sum of the whole is 

greater than the parts.  A fairly new method of modeling, agent-based modeling, utilizes 

small building blocks, known as agents, to represent objects within the system.  Allowing 

these agents to interact with each other, and with their environment, emulates complex 

systems. 
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3.1.1. Definitions 

Agents can be defined as entities which are “distinguishable from [their] 

environment…possess some kind of identity…have some autonomy of action, that they 

can engage in tasks in an environment without direct external control” (Rocha, 1999:3).  

Agents are governed by a set of rules to function, on what they can “sense” and how they 

can act.  Agents must also act rationally, based upon what they can perceive (Russell and 

Norvig, 1995).  Agents are used to represent a variety of objects in different systems and 

study areas.  However, most experts agree that agents must possess the basic qualities 

mentioned above.  Ferber (1999) gives the following well-developed definitions for the 

qualities of an agent and multi-agent systems.  An autonomous agent is a physical or 

virtual entity 

• that is capable of acting in an environment; 
• that can communicate directly with other agents; 
• that is driven by a set of tendencies (has autonomy); 
• which possesses resources of its own; 
• that is capable of perceiving its environment (although limited); 
• that has only a partial representation of this environment; 
• which possesses skills and can offer services; 
• that may be able to reproduce itself; and 
• whose behavior tends towards satisfying its objectives, taking account of the 

resources and skills available to it and depending on its perception, its 
representations and the communications it receives. 

 
A multi-agent system has the following elements: 

• an environment; 
• a set of objects that can be perceived, created, destroyed and modified by the 

agents; 
• an assembly of agents (the active entities in the system); 
• an assembly of relations linking the agents; 
• an assembly of operations enabling agents to perceive, produce, consume, 

transform, and manipulate objects; and 
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• operators whose task is to represent the application and reaction to these 
operations. 

 
Agents are commonly classified into two types: reactive (or dynamically coherent) 

and adaptive (dynamically incoherent) (Rocha, 1999:2-3).  Reactive agents are so named 

because they can only “react” – their next action (or state) is based on their current state 

and the state of their environment.  They have some degree of autonomy, but it is closely 

coupled with the environment.  Adaptive agents, however, possess some form of memory 

which allows them to make decisions based not only on their current state or the 

environment, but also on information that is stored within their memory.  This 

information can be merged using some type of decision procedure, allowing a decision 

capability that may produce different behaviors in agents.  This ability to possess 

alternate behaviors enables the agents to adapt over time beyond their initial state and 

may result in unexpected system behavior. 

Multi-agent systems are systems which contain more than one agent.  Multi-agent 

systems usually possess the following basic characteristics: agent goals, an environment, 

interaction of some type, and observed behavior.  Agents each have individual goals, 

some of which may be in conflict with the goals of other agents.  Not all of the agents 

need to be of the same type.  Most real world systems have more than one type of entity, 

and so are appropriately modeled using multiple types of agents.  The agents, as a group, 

may also have a group goal, which may not align with their individual goals. 

 The environment in which the agents are contained must allow the agents to 

interact with it, and allow the agents to interact among themselves.  The environment is 

often user-defined, its resolution being set based upon the objectives of the model.  For 
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example, an environment may be as simple as a rectangular grid in two-dimensional 

space, or as complex as a 3D terrain map for a battlefield complete with weather, terrain 

effects, and electronic warfare capabilities.  The environment can also be adaptive, 

allowing the agents to act upon it and alter its current state. 

 The most important function of the environment is to allow interaction.  

Interaction between the agents and the environment is facilitated by simple rules and 

bounds, which are imposed upon the agents and, if required, by the agents on the 

environment.  The environment also facilitates interaction between the agents, by 

allowing some form of communication or knowledge to pass from one agent to another.  

Interaction is the most important aspect of multi-agent systems.  It is this interaction 

property that enables the agents to react and adapt, and develop agent behaviors.  

Interaction also allows the system to develop behaviors that are not developed by the 

individual agents.  This emergent behavior is the subject of study in what is known as the 

Science of Complexity, which examines the behaviors of complex systems.  This is useful 

in modeling such complex systems as societies, economies, or businesses (Jilson and 

Mert, 2001:7). 

3.1.2. Applications of Agent-Based Modeling 

Various fields of research and study have applied the concepts of agent-based 

modeling to gain insight into the systems of interest.  Computer science has used agents 

to research aspects of artificial intelligence and robotics, as well as computer and internet 

networks.  Russell and Norvig (1995) discuss in depth on how agents and agent systems 

are related to artificial intelligence.  Sycara (1998) also reviews several computer-related 

applications of multi-agent systems.  Batty and Jiang (1999) look into how multi-agent 
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simulation has been used in geographic information systems.  Rocha (1999) details a 

number of agent-based models and their contributions to the field. 

An advancement often tied to agent-based modeling is the development of data 

farming.  This technique, outlined in Brandstein and Horne (1998), is the result of 

increased computing power and the flexibility of agent-based modeling.  It is the ability 

to conduct bottom-up analysis of a system by altering characteristics of that system at the 

agent level.  Each run of the system provides a point in “the landscape of possible 

outcomes” for a given measure of effect (Brandstein and Horne, 1998:95).  Considering 

all parameter settings yields this landscape of outcomes used to gain insight into the 

system. 

It is no coincidence that data farming was developed as part of Project Albert, at the 

US Marine Corps Combat Development Command (Horne, 2001).  Traditionally, combat 

has been modeled as various linear systems, or alternatively by the Lanchester Equations.  

The Lanchester Equations are a set of coupled ordinary differential equations that model 

warfare attrition (Ilachinski, 2000).  However, combat and warfare are anything but 

simple and deterministic; they are chaotic, complex systems characterized with 

intangibles such as the Clausewitzian fog and friction of war, courage, human leadership 

and such.  Agent-based models can be applied to combat not to give a prediction or an 

outcome, but to enhance understanding of combat.  Project Albert, for example, seeks to 

“develop and apply a series of new models…to explore, and seek robust answers to, 

questions relevant to Marine Corps organization, equipment, tactics, and doctrine” 

(Horne, 2001:2). 
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 One of the first examples of agent-based modeling applied to combat is ISAAC, 

or Irreducible Semi-Autonomous Adaptive Combat.  Sponsored by the Marine Corps, 

and developed at the Center for Naval Analysis, ISAAC is a computer simulation 

designed as a “conceptual playground” of agent-based combat modeling, and not a full 

combat model (Ilachinski, 2000).  The designers used a bottom-up approach versus the 

traditional top-down design, and each agent in ISAAC represents a primitive combat unit, 

governed by different “personalities” and “meta-rules”.  Ilachinski (2000) further 

discusses interesting complex behavior to emerge from simple primitive actions.  

EINSTein, a follow-on to ISAAC, extends the model as “an interactive tool box for the 

general exploration of combat as a complex adaptive system” (Ilachinski, 2000:41). 

 

3.2. Game Theory 

3.2.1. Background 

Game theory is the science of conflicting interest (Luce and Raiffa, 1957).  The 

mathematical approach of game theory originated in the early 1900’s from mathematician 

and economist John von Neumann, who published papers on game theory in 1928 and 

1937.  The main work of impact was the book by von Neumann and Morgenstern, Theory 

of Games and Economic Behavior (1944). 

A conflict of interest exists when two or more “individuals” have a situation where 

decisions must be made.  The situation may result in several possible outcomes, 

dependent on the decisions made by the individuals.  These individuals all have their own 

preferences on which outcome they desire, or value higher, and their preferences are not 
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in agreement.  Game theory seeks to analyze the components of these conflicts, and 

describe the choices of each individual and the possible resulting outcomes. 

Game theory outlines a few characteristics common to all games.  First, the game 

has two or more rational players, some of which are competing against each other.  

Second, there is a payoff, or utility, that each player desires to maximize.  This utility 

may be represented by a number of things: for instance money, time, or effort.  To 

accomplish the goal of payoff maximization, each player must make certain decisions 

during the game, sometimes without knowing what decisions the other players will make.  

The propensity, or probability, to make a certain decision is a player’s strategy.  Through 

analysis of the game, game theory attempts to determine which strategies will allow the 

player to maximize their payoff, usually at the expense of the other players. 

3.2.2. Definitions 

The assumption of “rational” players is the basis for conclusions in game theory.  

Rationality possesses many meanings, and differing levels depending on the environment 

in which the decision or choice of action is made (Rapoport, 1996:55).  Although there is 

no universal definition of rationality, Luce and Raiffa define it as the following: 

Of two alternatives which give rise to outcomes, a player will choose the one 
which yields the more preferred outcome, or, more precisely, in terms of the 
utility function he will attempt to maximize expected utility (Luce and 
Raiffa, 1957:50). 

Closely linked to the assumption of rationality is the quality of information.  Some 

games are “games of perfect information,” where at any point in the game each player 

knows the moves or actions, their own and their opponent’s, which have brought them to 

the current position.  On the other hand, games without perfect information may conceal 
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the available choices or the actions taken by one’s opponent (Rapoport, 1966:62).  For 

example, many card games such as poker or euchre are considered games without perfect 

information due to the concealment of one’s cards from the other players. 

Many games are characterized by two players who are opposed in preferences of 

outcomes; for example, if player 1 prefers outcome x to outcome y, then player 2 prefers 

outcome y to outcome x (Luce and Raiffa, 1957:59).  These players are called strict 

adversaries, and if all of their outcomes oppose one another, the game is called a strictly 

competitive game.  Luce and Raiffa remark that if a strictly competitive game can be 

represented such that the sum of the players’ payoffs sum to zero, the game is known as a 

zero-sum game (Luce and Raiffa, 1957:64). 

A player’s strategy is the representation of the choices they will make throughout 

the game, and their set of strategies enumerates all the ways a game can be played to 

reach an outcome.  For even the simplest of games, this set of “pure” strategies can be 

very large.  A mixed strategy occurs when a player randomly chooses between two or 

more pure strategies with a given probability for each strategy.  The objective of a mixed 

strategy is “to keep the opponent guessing about what one will do” (Rapoport, 1966:69). 

In some games, there may exist what is called a “saddle point” or an “equilibrium 

point.”  This point occurs where both rational players have chosen strategies such that it 

does not benefit them to change their strategy if their opponent does not change their 

strategy (Luce and Raiffa, 1957:62).  For example, consider a two-player zero-sum game.  

Player 1 wishes to maximize his payoff, and so player 2 wishes to maximize his own 

playoff, or because it is a zero-sum game, he desires to minimize player 1’s payoff.  

Player 1 is a maximizing player, while player 2 is a minimizing player.  If an equilibrium 
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point exists, it is the point where the player 1 has chosen a strategy that maximizes the 

minimum payoffs from each of his strategies.  Simultaneously, player 2 has chosen a 

strategy that minimizes the maximum payoffs from each of his strategies to player 1.  

Hence, this point is sometimes called a “minimax” point, but more often it is referred to 

as an equilibrium, or saddle, point.  Equilibrium points are not necessarily unique for a 

game, and may exist for games with pure strategies or games with mixed strategies.  

The applications of game theory are wide-ranging.  Common applications include 

economic and business situations, politics, behavioral sciences, and combat.  Although 

many assumptions have to be made between the transition from theory to real world, 

game theory can generate valuable insight into the nature of the conflict and the decisions 

facing the players.   

[Game theory] prescribes for given assumptions courses of action for the 
attainment of outcomes having certain formal “optimum” properties.  These 
properties may or may not be deemed pertinent in any given real world 
conflict of interest.  If they are, the theory prescribes the choices which must 
be made to get that optimum (Luce and Raiffa, 1957:63). 

 

3.3. Search Games 

3.3.1. Definition 

Search games are situations where a search problem can be formulated as a game 

theory problem (Benkoski and others, 1991:479).  The conflict involves a searcher and a 

hider, or evader, who does not want to be found.  The hider may be stationary or mobile.  

The payoff could be whether the hider is found or not, or how long it takes to find the 

hider.  Benkoski et al. (1991) detail a good number of search game references in their 

survey of search theory literature. 
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3.3.2. Relevant Applications 

The problem of searching for an evading target is addressed in Dobbie (1975).  The 

problem space is defined as a two-cell problem, where a single evader tries to avoid 

detection by moving away from the searcher when he senses the searcher’s presence.  

Dobbie finds the strategy for the searcher’s effort that maximizes the probability of 

detection in a given amount of time.  Stewart (1981) extends Dobbie’s formulation with 

two special cases.  First, the evader has a goal or objective to complete, and when this 

occurs, continuation of the search is no longer productive.  Second, the searcher is subject 

to a constraint on his set of resources, prohibiting him from searching during every time 

period of the game. 

Washburn (1979) considers a similar problem, except the target is moving in a 

discrete time and space.  During each time step, the searcher tries to detect the evader, 

and to maximize the change of immediate detection (a myopic strategy).  Washburn gives 

a necessary condition for optimality in this case. 

Baston and Bostock (1989) approach a one-dimensional helicopter versus submarine 

game, modeled as a two-person zero-sum game.  Both players are forced to move along a 

straight line, and neither player can see the other.  The helicopter has a given number of 

bombs with which to attack the submarine, and the payoff is whether or not the 

submarine is destroyed.  Baston and Bostock solve the game when only one bomb is 

available, and extend it to multiple bombs given certain constraints. 

Eagle and Washburn (1991) address two-person zero-sum search games where play 

continues for some period of time without either player receiving feedback.  Each player 
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moves from a preset plan.  The authors present two methods to solve the game: a method 

of fictitious play and a method of linear programming. 
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IV. Model Description 

 

4.1. Baseline Description and Design 

The baseline program was primarily authored by Major Lance Champagne, USAF, 

with contributions by Captain R. Greg Carl, USAF, and the author.  The Bay of Biscay 

simulation was coded in JAVA, which as an object-oriented computer programming 

language, naturally lends itself to the creation of multi-agent simulations.  The 

simulations were run on 2-GHz Pentium 4 PC’s running a Windows 2000 operating 

system.  Program design data was researched and utilized in the following order of 

importance: 1) historical fact as found directly from sources credited to Allied and 

German participants; 2) published studies directly related to the offensive search in the 

bay; 3) data derived from raw numbers in one or more of the preceding sources; and 4) 

good judgment (operational expertise) when the three previous sources fail or contradict 

one another (Champagne and Hill, 2003). 

 

4.2. Relevant Assumptions 

As with any model, there are certain key assumptions that must be stated up-front.  

Simulated time is updated in 2-minute increments.  “Daytime” in the model is defined as 

the period between nautical sunrise and nautical sunset (nautical sunrise and sunset occur 

when the sun is 12° below the horizon).  Each aircraft and U-boat represented in the 

simulation is an independent agent, having “fleet-level” or “squadron-level” properties or 

knowledge.  This means that every aircraft has the same airspeed, detection capabilities, 
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and such, but each acts independently of any other agent.  Both aircraft and U-boat agents 

have detection sensors which correspond to the inverse cube law. 

Aircraft search a 200 x 350 square nautical-mile (NM) area which is subdivided into 

twenty-eight 50 x 50 square NM non-overlapping sections.  At least one aircraft per day 

is assigned to search each section.  There are a maximum of 40 Allied aircraft operating 

out of bases in southern England.  Each aircraft flies to their assigned search sections, 

avoiding the coast of France and within range of enemy fighter aircraft.  Based on Allied 

aircraft assumptions we do not model enemy fighter aircraft.  Aircraft takeoff times are 

randomly generated per simulated day (24 hours), with at least 12 hours between the 

previous day’s landing time and the current day’s takeoff time.  Any maintenance 

cancellations occur before takeoff, and delay the aircraft for one day.  Weather 

cancellations affect the entire flying day and cancel all sorties for that day. 

An aircraft travels at 120 nautical miles per hour (knots), and will fly until it has 

used 70% of its fuel capacity, or until it has expended its munitions attacking a U-boat.  

Aircraft can only detect U-boats when the U-boats are surfaced, and will attack any 

detected U-boat if it is within range.  Aircraft expend their entire munitions load in a 

single attack, and immediately return to base.  Aircraft fly solo, and do not communicate 

with other aircraft.  Aircraft use a crossover barrier patrol pattern when searching an 

assigned section (Figure 3).  Attrition of aircraft due to accidents or active U-boat 

defenses is zero. 
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Figure 3.  Crossover Barrier Pattern 

The simulation starts with all 70 U-boats uniformly distributed throughout the Bay, 

one-half heading towards the North Atlantic, the other half heading to their home port.  

U-boats are assigned evenly to one of five ports in France.  U-boats entering a port 

remain there for 25 to 40 days of maintenance.  U-boats travel at 10 knots on the surface 

and at 2.5 knots while submerged.  For every 100 NM traveled while submerged, U-boats 

must spend at least 3 hours on the surface to recharge batteries.  Once a U-boat detects an 

aircraft, it will immediately submerge to avoid detection.  U-boats travel west-east from 

their ports using a shortest path to the Atlantic open waters, and back.  U-boats leave port 

with 30 days of supplies, and return to port with no supplies left.  Every U-boat that 

enters the North Atlantic has a 0.25 probability of being refueled and re-supplied and 

remaining on-station for an additional 30 days.  We do not explicitly model tanker U-

boats, capturing their effects with this 25% chance in increased on-station time. 
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V. Methodology 

 

5.1. Game Theory Application 

Historically, both the Allies and the Germans tested different operational strategies 

with the intent to gain an advantage over the other.  The Allies had a search strategy 

which defined how they partitioned their search effort between daytime and nighttime 

hours.  Likewise, the Germans followed a surfacing strategy which dictated the period of 

the day when they were allowed to surface.  For example, a pure nighttime strategy 

allowed only nighttime surfacing for the U-boats, and was employed at one time by 

Germany (McCue, 1990:26).  Eventually, the Allied operations researchers advocated a 

“balanced force” concept and their search effort “was distributed so that an hour spent on 

the surface at night was as dangerous for the U-boat as an hour spent on the surface in the 

daytime” (McCue, 1990:77-78). 

On the contrary, U-boats wished to evade the aircraft.  Logically, one would think 

the easiest means to accomplish this would be to surface either when the aircraft are not 

searching, or during times when it less dangerous to surface (such as night).  However, 

this logic could be exploited by an adversary by committing all search efforts to the 

chosen surfacing period.  Therefore, U-boats began to surface during both day and night 

hours, forcing the Allied search efforts to continue around the clock, and “making Allied 

concentration on any one part of the day fruitless” (McCue, 1990:78). 

How then, did the Allies’ and German’s competing strategies affect one another?  

Were there strategies which were dominant and always produced better results than the 

alternatives?  Was there the existence of a game theoretic equilibrium point, or saddle 
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point, that the opponents drifted towards?  What if strategies could not change, and 

conversely, what if they could?  These questions and other characteristics are investigated 

with our agent-based model extended to incorporate game theory. 

5.1.1. Formulation 

Using concepts from game theory, the Bay of Biscay conflict can be depicted as a 

competitive game with two “players.”  These players are defined as the collective Allied 

search forces and the collective of German U-boats.  Both sides are considered rational 

players because, as McCue states, “we may cite historical evidence as to Donitz’s 

calculating rationality…[crucially], Donitz and the Allies operated according to the same 

objective function: merchant vessel sinkings” (1990:18). This conflict is also a game 

without perfect information, as neither side knows the exact strategies of the other. 

The objectives for this particular game are to maximize number of U-boats detected 

by the Allied aircraft while the Germans desire to minimize detection.  This makes the 

game a zero-sum game, for it will be construed that the Allies gained the number of 

detections, while the Germans “lost” the number of detections.  The number of U-boat 

detections was chosen as the objective, rather than the number of U-boats killed 

(destroyed) for two reasons.  First, the Allies sometimes were not able to immediately 

detect if they had killed a U-boat after dropping munitions.  Waddington states that “it 

usually took at least some weeks… [to] arrive at a fairly firm estimate of the result of any 

attack, so that analyses of tactics could not be entirely up-to-date” (Waddington, 

1973:169).  Second, the number of U-boats killed was dependent on more than just the 

search and surfacing strategies of both sides; the probability of killing a U-boat after it 
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was detected was very dependent on technology and other factors.  In fact, during 1943, 

the probability of kill given detection was 0.40 by day and 0.11 by night. 

The Allies had two pure search strategies available to them: search only by day, and 

search only by night.  Likewise, the Germans had two pure surfacing strategies: surface 

only by day, and surface only by night.  However, when one formulates the game to 

contain mixed strategies, we are able to partition the search efforts and surfacing policies 

into mixed strategies with varying probabilities. 

Let α1 be the Allied pure strategy of daytime search, and α2 be the pure strategy of 

nighttime search.  Then, 
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where x1 is the percentage of search effort during daytime and x2 is the percentage of 

search effort during nighttime. 

Similarly, let β1 be the Allied pure strategy of daytime search, and β2 be the pure 

strategy of nighttime search.  Then, 

( )
[ ]

1 
1,0,

 ,such that  strategy, surfacingBoat - UB

21

21

2211S

=+
∈

∈≡

yy
yy

yyBS ββ
 

where y1 is the percentage of surfacing during daytime and y2 is the percentage of 

surfacing during nighttime.  Since the α’s and β’s are fixed, for simplification of 

nomenclature, the mixed strategies will be written from here on as (x1, x2) and (y1, y2).  

For example, an Allied search strategy of (0.7, 0.3) signifies 70% daytime searching and 

30% nighttime searching. 
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This formulation closely resembles what is known as a Colonel Blotto game.  A 

Colonel Blotto game, first defined by Borel (1938), is a two-person zero-sum game 

where both opposing players have n independent battlefields in which to distribute their 

forces, without knowing their opponent’s distribution.  This game involves the 

partitioning of resources to maximize some objective.  This game could be considered a 

Colonel Blotto game if one thinks of daytime and nighttime as two independent 

“battlefields” and the choice to partition the Allied search aircraft and the U-boats 

surfacing as the strategies. 

A typical game is analyzed by creating a game payoff matrix, similar to that in 

Figure 4, to represent each player’s strategies and the resulting payoffs.  The payoffs can 

either be values, or some deterministic function.  These are mathematically examined to 

determine dominant strategies or equilibrium points.  However, a combat campaign, like 

the Bay of Biscay campaign, is extremely complex with many probabilistic features.  In 

order to determine the payoffs for this game, the simulation was run with replications at 

different design points, with the eventual goal of creating a response surface to be 

modeled and analyzed. 

  B1 B2 B3 … BN 
A1 P11 P12 P13 … P1N 
A2 P21 P22 P23 … P2N 
A3 P31 P32 P33 … P3N 

.. .. .. .. .. .. 

AM PM1 PM2 PM3 … PMN 

Figure 4.  Typical Game Payoff Matrix 
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5.2. Scenarios and Run Design 

The objective of this research is to explore the effects that different strategies have 

upon the number of U-boat detections.  Three different scenarios are explored.  For the 

first scenario, both the Allies and the Germans have “fixed” strategies, such that over the 

course of the simulation, these strategies do not change.  The landscape of the results is 

explored using response surface methodology.  For the second scenario, one side is 

allowed to adapt their strategy while the other side’s strategy remains fixed.  These 

results are compared to those of the first scenario.  Finally, scenario three looks at 

instances where both sides can adapt their strategies. 

5.2.1. Model Modifications 

The use of strategies, particularly any pure strategies, required that strict guidance 

for both the bombers and the U-boats be added to the baseline model’s code.  For the 

Allied bombers, a schedule was implemented to distribute the takeoff times and search 

efforts between day and night hours.  For the U-boats, conditional statements were 

created to ensure day and night surfacing events of every U-boat abided by the overall 

surfacing strategy.  Additionally, stricter rules were applied to the model for the cases of 

pure strategies.  For a detailed explanation of these model modifications, refer to 

Appendix A. 

Another modification of the model was an algorithm enabling either player (or both 

simultaneously) to adapt their strategies during the simulation, based on perceived 

conditions.  The algorithm was designed to be simple, use only data available to each 

side, and take little time to run.  The algorithm exploited past strategies in the form of a 

strategy average, the current strategy, and a projected strategy based only on the current 



 33

strategy setting and the immediate results.  These three factors were combined in a 

weighted equation to produce the new strategy setting.  For a more detailed explanation 

of the adaptation algorithm and equations, refer to Appendix A. 

For scenarios one and two, the simulation modeled the time period April 1943 

through September 1943.  Historically, this time period contained no major technology 

changes, stabilizing the probability of kill given detection (daytime PK|D = 0.41, nighttime 

PK|D = 0.11). 

5.2.2. Scenario One 

This scenario required fixed strategies for both players.  A 23 full-factorial design 

was used to explore the spectrum of strategies.  The three settings chosen for each 

player’s strategies are: 

  Aircraft: (1, 0), (0.5, 0.5), (0, 1) 

  U-boats: (1, 0), (0.5, 0.5), (0, 1) 

Table 1 reflects the nine design points: 

Table 1.  Scenario One Design Points 

Design 
Point 

Allied Search 
Strategy 

U-Boat 
Surfacing 
Strategy 

1 (1, 0) (1, 0) 
2 (1, 0) (0.5, 0.5) 
3 (1, 0) (0, 1) 
4 (0, 1) (0, 1) 
5 (0.5, 0.5) (1, 0) 
6 (0.5, 0.5) (0.5, 0.5) 
7 (0.5, 0.5) (0, 1) 
8 (0, 1) (1, 0) 
9 (0, 1) (0.5, 0.5) 
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Each design point was replicated 20 times, with 12 months of simulated warm-up time to 

distribute the U-boats, followed by 6 months of simulated time for data collection. 

5.2.3. Scenario Two 

This scenario required one player with a fixed strategy, and one player with an 

adaptive strategy.  Adaptation of strategy occurred each month of the simulated 

timeframe.  The nine design points in Table 1 were used, with the same number of 

replications and run lengths.  This scenario was divided into two sets: Set A allowed only 

the Allied search aircraft to adapt, while Set B allowed only the U-boat’s surfacing to 

adapt. 

5.2.4. Scenario Three 

This scenario gave both players adaptive strategies.  In order to investigate this 

scenario, three design points were chosen at the following settings: 

Table 2.  Scenario Three Design Points 

Design Point Allied Search 
Strategy - Start

U-Boat Surfacing 
Strategy - Start

1 (1, 0) (0, 1)
2 (1, 0) (1, 0)
3 (0.5, 0.5) (0.5, 0.5)  

This case uses just three points since no matter what starting strategies are employed, 

over time the adaptation by both sides will yield similar strategies.  These three points 

also represent interesting initial conditions: pure opposing strategies, pure matched 

strategies, and matched mixed strategies.  A longer period of data collection was 

necessary to investigate if and how the adaptive strategies stabilize in the long run.  For 

this case, adaptation of strategy occurred every month, with each run again involving 20 

replications, 12 months of warm-up, but 12 months of data collection. 
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VI. Analysis and Results 

 

6.1. Scenario One 

6.1.1. Initial Hypothesis 

A first look at this game scenario was accomplished by setting up a simplified game 

payoff matrix.  We can logically state that at the two design points where opposing pure 

strategies occur, no U-boats will be detected.  If Allies are only searching by day, and the 

U-boats are only surfacing at night, or vice versa, no U-boats should be found.  Similarly, 

at the points where the two sides have matching pure strategies, large numbers of U-boats 

should be found.  And at all other points, some U-boats should be detected (refer to 

Table 3). 

Table 3.  Scenario 1 Game Payoff Matrix 

 Bs 
As (0, 1) … (0.5, 0.5) … (1, 0) 

(0,1) Many  Some  0 
…

      

(0.5, 0.5) Some  Some  Some 

…
      

(1, 0) 0  Some  Many 
 

This initial analysis would appear to indicate that an equilibrium point could exist for this 

scenario, lying somewhere in the middle. 

6.1.2. Actual Results 

The actual empirical results are listed in Table 4 below, which shows the average 

number of U-boat detections (over the six month time period and 20 replications). 
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Table 4.  Average Number of U-Boat Detections 

Design 
Point 

Allied Search 
Strategy 

U-Boat Surfacing 
Strategy 

Average Number 
U-Boat Detections 

1 (1, 0) (1, 0) 275.1 
2 (1, 0) (0.5, 0.5) 233.45 
3 (1, 0) (0, 1) 0 
4 (0, 1) (0, 1) 746.75 
5 (0.5, 0.5) (1, 0) 77.45 
6 (0.5, 0.5) (0.5, 0.5) 273.8 
7 (0.5, 0.5) (0, 1) 146.2 
8 (0, 1) (1, 0) 0 
9 (0, 1) (0.5, 0.5) 374.65 

 

To perform the analysis using response surface methodology, all the data was 

analyzed using SAS JMP statistical software, Version 5.5.  All data can be found in 

Appendix B.  A response surface model was fit (using JMP), producing a model with an 

R2 of 0.948 and an adjusted R2 of 0.947 (Table 5): 

 

Table 5.  RSM Model Results 

Summary of Fit 
R Square 0.948501
R Square Adjusted 0.947021
Root Mean Square Error 50.56183
Mean of Response 236.3778
Observations 180 

 
Analysis of Variance 

Source DF Sum of Squares Mean Square F Ratio 
Model 5 8192859.6 1638572 640.9439 
Error 174 444830.7 2556 Prob > F 

C. Total 179 8637690.3  <.0001 
 

Lack of Fit 
Source DF Sum of Squares Mean Square F Ratio 

Lack Of Fit 3 360068.31 120023 242.1344 
Pure Error 171 84762.40 496 Prob > F 
Total Error 174 444830.71  <.0001 

    Max RSq 
    0.9902 
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The model is shown in Equation 1: 

1525.345
2

153.3451185.10211475.1138
2

127.4235077.690 yyyxxxz −−+−+=  (1) 

where x1 is the aircraft day strategy, y1 the U-boat day strategy, and z is the number of U-

boat detections.  Recall that x2, the aircraft night strategy, is just 1 – x1.  The same goes 

for y2, the U-boat night strategy (y2 = 1 – y1). 

  Figure 5 profiles the contour plot, with the aircraft daytime strategy on the x-axis 

and the U-boat daytime strategy on the y-axis (the nighttime strategies are just the 

inverse).  The contour plot depicts an existing equilibrium point for the mixed strategies. 
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Figure 5.   Contour Plot of RSM Model (Scenario 1) 

A three-dimensional view of the response surface clearly shows the saddle point 

(Figure 6): 

Equilibrium 
Point 
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Figure 6.  3D View of Response Surface (Scenario 1) 

The location of the equilibrium point is an aircraft strategy of (0.699, 0.301) and 

U-boat strategy of (0.534, 0.466).  At this point, the Allies would be searching almost 

70% during the day, and only 30% at night, while the U-boats surface almost evenly day 

and night.  At first glance, this appears illogical since historically it was more difficult to 

detect a U-boat during the nighttime, thus the Allied equilibrium point should have a 

greater nighttime search percentage than the day.  However, the results correspond to 

history. 

During the months from April 1943 through September 1943, at the latitude and 

longitude of the Bay of Biscay, nighttime only accounts for approximately 8 hours, or 

33%, of a 24-hour day.  Essentially, at the equilibrium point the Allies are dedicating 

70% of the search effort to match the approximate 66% time of daylight, and 30% search 

effort for the 33% time of night.  This accurately matches what actually happened, since, 

as stated previously, the Allies adopted the balanced force concept to make it equally 
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dangerous for U-boats to surface during both day and night.  “Great emphasis was placed 

on the necessity for a properly balanced force, capable of attacking throughout the 

twenty-four hours” (Waddington, 1973:232).  Likewise, our U-boat strategy at the 

equilibrium point mirrors history by allowing surfacing almost equally between day and 

night, to force the Allies to search around the clock. 

 

6.2. Scenario Two 

6.2.1. Initial Hypotheses 

If one of the two players is allowed to adapt their strategy over time while the other 

strategy remains fixed, the logical conclusion is that the adapting player will change 

strategies to benefit themselves.  For example, enabling the search aircraft to adapt 

strategies should enable them to determine U-boats’ surfacing strategy, and to nearly 

match it to find the most U-boats.  Likewise, enabling the U-boats to adapt would allow 

them to surface when the least number of aircraft are searching, in order to minimize 

detections.  The effect of this would be that the response surface found in Scenario One 

would level out and the equilibrium point should disappear. 

6.2.2. Actual Results – Set A 

For the case allowing the aircraft to adapt search strategies, Table 6 shows the 

average number of U-boat detections, and compares them to the results from Scenario 

One (Table 4): 
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Table 6.  Results for Aircraft Strategy Adaptation 

Design 
Point

Allied Search 
Strategy - Start

Average Search 
Strategy - End

U-Boat 
Surfacing 
Strategy

Average U-Boat 
Detections - 
Scenario 1

Average U-Boat 
Detections - 
Scenario 2A

Change

1 (1, 0) (0.925, 0.075) (1, 0) 275.1 103.7 Decrease
2 (1, 0) (0.532, 0.468) (0.5, 0.5) 233.45 101.7 Decrease
3 (1, 0) (0.182, 0.818) (0, 1) 0 171.7 Increase
4 (0, 1) (0.076, 0.924) (0, 1) 746.75 225 Decrease
5 (0.5, 0.5) (0.889, 0.111) (1, 0) 77.45 101.15 Increase
6 (0.5, 0.5) (0.49, 0.51) (0.5, 0.5) 273.8 105.4 Decrease
7 (0.5, 0.5) (0.116, 0.884) (0, 1) 146.2 210.45 Increase
8 (0, 1) (0.816, 0.184) (1, 0) 0 91.6 Increase
9 (0, 1) (0.467, 0.533) (0.5, 0.5) 374.65 112.7 Decrease  

The average ending search strategies for the aircraft show that only after six updates 

(six months), the strategies are very close to the U-boat’s surfacing strategies.  The 

adaptation algorithm worked properly to hone in on the German’s strategies in order to 

maximize the number of U-boat detections.  To demonstrate, two graphs showing the 

adaptation of the aircraft’s strategies over time are displayed in Figure 7 and Figure 8.  

Figure 7 shows the day strategies for all 20 replications for design point 9, while Figure 8 

shows the mean day strategy for design point 9.  

A response surface model was fit to the results.  The model had an adjusted R2 of 

0.927.  JMP did find an equilibrium point for the model at an aircraft strategy of (0.538, 

0.462) and U-boat strategy of (0.787, 0.213), but the contour plot of the model (seen in 

Figure 9) shows that the surface has leveled out considerably.  It is expected that given 

more updates (months), this equilibrium point would soon disappear.  One must also 

realize that the model is built using the starting strategies and not the strategies after 

adaptation.  The equation for the model is below (Equation 2): 

1
2

1111
2

1 57.2791764.654.1855.290 yyyxxxz −+++−=        (2) 
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Figure 7.  Aircraft Strategy Adaptations (20 replications) for Design Point 9 
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Figure 8.  Mean Aircraft Strategy Adaptations for Design Point 9 
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In four of the design points there are increases in the average number of detections.  

Two of these cases are the design points with the opposing strategies.  The other two 

cases occur for when the aircraft search strategy starts as (0.5, 0.5), and adapts toward a 

U-boat pure strategy. 
1
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Figure 9.  Contour Plot of RSM Model (Scenario 2A) 

 
However, there is a decrease in the average number of detections in the remaining 

five cases.  The reason lies within the logic behind the adaptation algorithm itself.  First, 

the aircraft’s algorithm, taking into account opponent adaptation, never permits the 

aircraft to reach or maintain a pure strategy.  The reasoning behind this was that if the 

aircraft do not fly during one part of the day, then how would they know if the U-boats 

were surfacing during that period?  The algorithm automatically kicks a pure strategy out 

Equilibrium 
Point 
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to a mixed strategy of (0.5, 0.5), and adapts from there.  For instance, at design point 1, 

the aircrafts strategy initially adapts away from the U-boats strategy, unlike Scenario One 

which continuously matches.  This results in fewer U-boats being found over the 6-month 

period.  Secondly, the algorithm has only had six updates in which to adapt.  It would be 

expected that given more time, the results for the design points that had decreasing 

detection averages would eventually either result in increases or at least get close enough 

that there would be no statistical difference between the two averages. 

6.2.3. Actual Results – Set B 

For the case allowing the U-boats to adapt surfacing strategies, the following table 

shows the average number of U-boat detections, and compares them to the results from 

Scenario One: 

Table 7.  Results for U-Boat Strategy Adaptation 

Design 
Point

Allied Search 
Strategy

U-Boat Surfacing 
Strategy - Start

Average Surfacing 
Strategy - End

Average U-Boat 
Detections - 
Scenario 1

Average U-Boat 
Detections - 
Scenario 2B

Change

1 (1, 0) (1, 0) (0.013, 0.987) 275.1 22.1 Decrease
2 (1, 0) (0.5, 0.5) (0, 1) 233.45 13.3 Decrease
3 (1, 0) (0, 1) (0, 1) 0 0 No Change
4 (0, 1) (0, 1) (1, 0) 746.75 27.95 Decrease
5 (0.5, 0.5) (1, 0) (0.568, 0.432) 77.45 97.45 Increase
6 (0.5, 0.5) (0.5, 0.5) (0.367, 0.633) 273.8 110.95 Decrease
7 (0.5, 0.5) (0, 1) (0.374, 0.626) 146.2 102.9 Decrease
8 (0, 1) (1, 0) (1, 0) 0 0 No Change
9 (0, 1) (0.5, 0.5) (0.950, 0.050) 374.65 99.5 Decrease  
 

The results in Table 7 show that the U-boat’s algorithm did very well at adapting 

away from the aircraft’s strategies.  Figures 10 and 11 show the day strategies for all 20 

replications for design point 9, and the mean day strategy across all replications.  Table 7 

also reveals that this algorithm performed better under these circumstances than did the 

aircraft’s.  All but one of the original design points experienced a reduction or no change 
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in the average number of detections.  (The no changes were design points 3 and 8, 

opposing pure strategies that had also originally found zero U-boats; a decrease from zero 

is not possible). 

Again, the results were used to fit a response surface model.  The model had an 

adjusted R2 of 0.6399, signifying more variation within the data than the previous two 

models.  However, JMP did not find an equilibrium point; in fact there is maximum 

located at aircraft strategy (0.448, 0.552) and U-boat strategy (0.476, 0.524).  The contour 

plot of the model (Figure 12) also shows a maximum on the surface.  When aircraft have 

pure strategies, the U-boats quickly adapt towards the opposite pure strategy.  When the 

aircraft have a (0.5, 0.5) mixed strategy, they cannot find a safe pure strategy to move 

towards and end up fluctuating around the (0.5, 0.5) strategy.  Significantly more U-boats 

are found at these design points (points 5, 6, and 7), forcing the non-linearity and local 

maximum.  The equation for the model is shown here (Equation 3): 

1
2

1111
2

1 4.1314.13105.5082.2755.306415.33 yyyxxxz +−++−=  (3) 
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Figure 10.  U-Boat Strategy Adaptations (20 replications) 
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Figure 11.  U-Boat Strategy Adaptations (Mean) 
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Figure 12.  Contour Plot of RSM Model (Scenario 2B) 

 

 

6.3. Scenario Three 

6.3.1. Initial Hypothesis 

If both players have the capability to adapt their strategies, in the long run these 

strategies should stabilize around some equilibrium.  In doing so, the average number of 

U-boat detections should be similar. 

6.3.2. Actual Results 

The starting and ending average strategies, along with the average number of U-boat 

detections are provided in Table 8: 

Maximum 
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Table 8.  Results for Two-Player Adaptation 

Design 
Point

Allied Search 
Strategy - Start

Allied Search 
Strategy - End

U-Boat Surfacing 
Strategy - Start

U-Boat 
Surfacing 

Strategy - End

Average 
Number U-Boat 

Detections
1 (1, 0) (0.542, 0.458) (0, 1) (0.164, 0.836) 183.75
2 (1, 0) (0.625, 0.375) (1, 0) (0.327, 0.673) 180.45
3 (0.5, 0.5) (0.522, 0.478) (0.5, 0.5) (0.259, 0.741) 182.6  

The numbers show that each side ended up with a mixed strategy.  The average 

ending strategies for the aircraft are very close to each other, while for the U-boats these 

ending strategies were all weighted towards nighttime surfacing.  Looking at the graphs 

for each design point (Figures 13, 14, and 15, respectively), it is fairly obvious that the 

strategies have stabilized near an equilibrium strategy.  Although from design point to 

design point there seems to be differences in what this equilibrium strategy might be, this 

may be an artifact of the initial starting conditions for each strategy or due to the 

stochastic nature of the system. 

Furthermore, the average numbers of U-boat detections over these 12-month periods 

are very close.  So close, in fact, that a both a student’s t-test and a Tukey-Kramer test for 

differences in means at an alpha level of 0.05 result in no significant statistical 

differences among the averages.  See Figure 16 for the SAS JMP analysis. 
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Figure 13.  Two-Player Adaptation, Design Point 1 
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Figure 14.  Two-Player Adaptation, Design Point 2 
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Figure 15.  Two-Player Adaptation, Design Point 3 

Alpha = 0.05 
Comparisons for each pair using Student's t: 

t Alpha 
2.00247 0.05 
 
Levels not connected by same letter are significantly different: 
Level  Mean 

1 A 183.75000 
3 A 182.60000 
2 A 180.45000 

 
Comparisons for all pairs using Tukey-Kramer HSD: 

q* Alpha 
2.40642 0.05 
 
Levels not connected by same letter are significantly different: 
Level  Mean 

1 A 183.75000 
3 A 182.60000 
2 A 180.45000 

Figure 16.  Means Comparison Test Output (SAS JMP) 
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VII. Conclusion 

 

This research used an agent-based simulation to investigate game-theoretic strategies 

of a combat scenario.  The research showed that for mixed strategies an equilibrium point 

did exist, and that the strategies at this point concurred with historical actions.  The 

capability of one side to adapt strategies during the campaign changes the shape of the 

strategies’ response surface, eventually eliminating the equilibrium point altogether.  This 

adapting player is also able to take advantage of the other player’s fixed strategies, and 

increase their payoff in certain areas.  Finally, two adapting players will, given time, end 

up at some level of equilibrium, possibly dependent on their initial conditions.  

Fluctuations in these levels could be due to the stochastic nature of the complex system, 

or a lack in adaptation efficiency.  Overall, this research has demonstrated that a properly 

modeled agent-based system is a viable means to analyze the game-theoretic properties of 

a complex system. 

 

7.1. Recommendations for Future Work 

Future research should focus on extending this work in three areas.  First, extend this 

work to accommodate increased data collection times for one-sided and two-sided 

adaptation.  This will garner insight into the disappearance of equilibrium points for the 

one-sided case, and the determination of where strategy equilibrium exists for the two-

sided case.  Also, look at running the fixed strategy case again for the remaining six 

months out of the year, to see if the changing daylight hours still impact the equilibrium 

point. 
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Second, improve the adaptation algorithm to increase its adaptation effectiveness.  

Only a minimal number of test runs were accomplished to assess its performance 

characteristics.  There may be a way to optimize the weighted functions to improve 

performance.  More powerful methods to determine new strategies would allow for 

quicker adaptation. 

Finally, investigate other factors that were held constant during the simulation, such 

as technology levels, probability of kills, and alternative tactics such as “wolf-packs,” and 

determine their effects on the strategies.  Enable adaptation of technology/counter-

technology over time to alter probability of detection and probability of kill.  Look at 

alternative tactics for both sides, like U-boat “wolf-packs,” the policy of crossing the Bay 

in groups for safety; surfaced crossings where U-boats stay on the surface as much as 

possible to travel at maximum speed and minimize time in the Bay; or an Allied group 

search, where aircraft search in close proximity to each other and can radio in other 

aircraft to attack detected U-boats.  Finally, enable some form of communication between 

agents in order to promote learning.  The Allies could use this to facilitate a type of 

priority search, where the place emphasis on searching those grids with larger numbers of 

detected U-boats.  The Germans could use communication to travel by avoidance routing, 

by which they avoid those areas of the Bay which have had the most U-boat detections or 

kills. 
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Appendix A: Code Modifications for Game Theory 
 
 

Bomber Code Modifications 
 
 To enable search aircraft to be partitioned between day and night searches for a 
given Allied search strategy, a method was devised to assign bombers to search at either 
day or night.  In the JAVA code, a bomber was designated either a “day bomber” or a 
“night bomber.”  A “day bomber” could only search for U-boats during daylight hours, 
while a “night bomber” could only search during nighttime hours.  Additionally, a rule 
was imposed that prevented aircraft to search after their assigned time periods.  For 
example, day bombers could not search beyond sunset; once this “transition point” was 
reached, day bombers would immediately stop searching and return to base.  The same 
rule held for night bombers and the sunrise transition point. 
 
 To ensure day bombers and night bombers took advantage of their entire time 
window for searching, a schedule was created to coordinate daily takeoff times.  This 
schedule allowed bombers to takeoff up to three hours before their starting transition 
point and travel to their assigned search grid.  Only when the transition point to their 
assigned search time occurred were the bombers allowed to start searching.  The last 
possible bomber takeoff time was scheduled for seven hours before the next transition 
point.  This allowed a bomber taking off at that time three hours to travel to its search 
grid and four hours of search time before the next transition point occurred, forcing the 
bomber to stop searching and return to base.  Between the earliest and latest possible 
takeoff times for the bombers, the actual takeoff time was scheduled using a uniform 
random number draw between these two bounds.  The takeoff schedule concept is shown 
below: 
 

 
 
For a pure strategy of daytime searching, all aircraft were designated as day bombers.  
Likewise, a pure strategy of nighttime searching meant all aircraft were designated as 
night bombers.  When a mixed strategy was assigned, the aircraft in the squadron were 

12M 12NSUNRISE SUNSET 

Day Bomber Take-offs 

Night Bomber Take-offs 

Day Bomber Search 

Night Bomber Search 

3 hrs 

3 hrs 

7 hrs 

7 hrs 
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designated either as day bombers or night bombers according to the partitioning of the 
mixed strategy.  For example, if the day search strategy was 0.70, then 70% of the 
bombers would search during the daytime hours. 
 
 
U-boat Code Modifications 
 
 To partition the U-boats between day and night surfacing, special code was added 
to the model.  A uniform random number draw between 0 and 1 occurred each time a 
U-boat needed to surface.  If this value corresponded to the probability of surfacing 
during that specific time period, and it occurred during said time period, the U-boat 
surfaced.  If not, the U-boat waited for a set period of time before attempting to surface 
again.  For example, if the probability of surfacing at night was 0.70, and the random 
number draw produced a value of 0.5432, and it was also the nighttime period, then the 
U-boat surfaced.  Additionally, if the random number draw produced a value of 0.877, 
and it was the daytime period, then that U-boat also surfaced.  A simple example of all 
possible results appears in the following table: 
 

Case Random 
Number Draw 

Night Surfacing 
Strategy 

Time 
Period Result 

1 0.5 0.7 Nighttime Surface 
2 0.9 0.7 Nighttime Stay submerged 
3 0.5 0.7 Daytime Stay submerged 
4 0.9 0.7 Daytime Surface 

 
In the cases of pure strategies, strict measures were applied to ensure proper 

surfacing and timely submergence.  These conditional statements looked for two 
particular situations and ensure the U-boats followed the logic for a pure strategy.  First, 
if a U-boat had appropriately surfaced, but the time needed to recharge the batteries 
would force it to remain surfaced during the transition point to the next, and prohibited, 
time period, the conditional statement forced the U-boat to submerge when it entered a 
window of time before the transition point.  This window of time is called the forced-
window, and began 46 simulated minutes before a transition point, ensuring all updating 
U-boats on the surface would be identified and forced to submerge.  This window was 
required due to the fact that in the model, U-boats update their state (position, 
submergence, etc.) in set increments of time.  A window this large was chosen to ensure 
that every U-boat would update at least once within the time span of the window, and 
would submerge.  Additionally, if a U-boat did not fully recharge its batteries, it could 
then travel a distance proportional to the actual time it spent on the surface.  The 
following diagram details this forced-window condition. 
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Example Scenario: 

• Pure nighttime surfacing only, current time period is nighttime 
• U-boat is surfaced, next update is at 0416 hours 
• Transition point (sunrise) is at 0430 hours 
• Result: at next update (0416 hrs), U-boat will be in forced-window  

(0344 – 0430 hours); U-boat will submerge and continue travel 
  
The second situation occurs if a U-boat is submerged during its allowable 

surfacing period, but is scheduled to surface right before the transition point.  Another 46 
minute window is established before the transition point to prevent the U-boat from 
surfacing.  The purpose is to prevent U-boats from surfacing immediately before a 
transition point and remaining on the surface during the prohibited time period.  This 
window is called the prevent-window.  The following diagram details this condition. 
 

 
 
Example Scenario: 

• Pure nighttime surfacing only, current time period is nighttime 
• U-boat is submerged, next update is at 0416 hours and will result in 

surfacing 
• Transition point (sunrise) is at 0430 hours 
• Result: at next update (0416 hrs), U-boat will be in prevent-window 

(0344-0430 hours); U-boat will remain submerged 
 
It must be emphasized that both of these conditions and windows are only 

enforced when the U-boats are operating under pure surfacing strategies. 
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Adaptation Algorithm 
 
 The purpose of the adaptation algorithm within the model is to enable both the 
Allies and the U-boats to change their search or surfacing strategies over set time 
increments in order to optimize their outcomes.  The adaptation mechanism was designed 
to meet certain criteria for performance.  First, the algorithm was limited to only use 
statistics from the model as inputs.  These statistics needed to reflect a measure of 
historical accuracy, such that they were a type of information available to decision 
makers during World War II.  Second, the algorithm had to be easy to implement, but 
detailed to a degree to produce some means of efficient adaptation in strategy.  Finally, 
the algorithm had to be flexible enough to enable reaction and adaptation to possible 
changes in an opponent’s strategy, but simultaneously be stable enough so that the 
strategies were not wildly fluctuating over time. 
 
 Within the JAVA model, a new Strategy class was created to house the adaptation 
algorithm.  This class was responsible for collecting appropriate statistics for inputs, and 
after a new strategy had been determined, would update the strategies for all aircraft 
and/or U-boat agents.  This class was structured such that only one side or the other, or 
both simultaneously, could change their strategy.  The class also tracked these strategy 
changes over time and reported these levels with the normal model output. 
 

The first step in the creation of the algorithm determined the type of information 
to be used for each side as inputs.  For the Allies, it was simply the number of U-boat 
detections over the given time period.  This is logical as a sighted U-boat was direct 
evidence that U-boats were surfacing during a particular time period.  As stated in the 
main body of this thesis, often times the Allies did not have reliable or timely data 
regarding the destruction of a U-boat.  So historically and logically, the only reliable 
measure of when the U-boats were surfacing is when aircraft detected surfaced U-boats. 

 
For the Germans, the number of inputs for determining the aircraft search strategy 

tripled.  The first input was the number of U-boat detections.  Historically, U-boats could 
sometimes determine when aircraft had detected them, either based on the fact that the 
aircraft were currently attacking, or that their radar search receivers alerted them to 
incoming aircraft.  The second input, closely related, was the number of aircraft sighted.  
If a U-boat detected a nearby aircraft, it would know the time period when that aircraft 
was searching.  Finally, the third input was the number of U-boats killed.  Admiral 
Donitz’s staff kept in daily radio contact with all U-boats, so they immediately knew if 
one had been destroyed.  Thus, it was known that aircraft were searching during the same 
time period that U-boats were being killed. 
 

Inputs into Adaptation Algorithm 
Aircraft U-boats 

Number of U-boat detections Number of U-boat detections 
 Number of aircraft sightings 
 Number of U-boats killed 
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 Once the inputs for each side’s adaptation algorithm were defined, the next step 
was to formulate a process to find a new strategy from this limited information.  Besides 
these inputs, each side had available to them their previous strategies and the current 
operating strategy.  These three pieces of information could be formulated and combined 
to result in a new strategy.  The method by which this was accomplished is outlined in the 
diagram below. 
 

 
 
 A side’s previous strategies were tracked and averaged together to form a 
representation of past strategies.  This component of the new strategy would provide a 
necessary stability and prevent uncontrollable oscillations in strategy based on possible 
inputs that are misleading and do not reflect the opponent’s true strategy.  The current 
strategy should theoretically encapsulate the successful adaptation of strategy up to the 
present.  And the projected strategy, determined solely by the inputs from the most recent 
time increment, gives an instantaneous snapshot of what the strategy should be to take 
advantage of the opposition’s strategy.  These three components are combined using a 
weighted function, resulting in a new strategy.  The weights for this function used in the 
model were arbitrarily determined by the author to reflect logical considerations.  These 
weights are shown here: 
 

Allied Component Bomber Day 
Strategy Average 

Current Bomber 
Strategy 

Projected Bomber 
Strategy 

Weight 0.25 0.35 0.40 

U-boat Component U-boat Day 
Strategy Average 

Current U-boat 
Strategy 

Projected U-boat 
Strategy 

Weight 0.25 0.35 0.40 
 

Past Strategies 
(Strategy Average) 

Current Strategy 

Projected Strategy 

New   Strategy 

INPUTS 

Weighted 
Function
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 The past strategies and the current strategy components were easily acquired.  The 
complicated part was to transform the inputs into a projected strategy in some logical 
manner.  The best way to illustrate this is to step through this process for one of the sides; 
the aircraft adaptation algorithm was selected for this. 
 
First, a “day factor” is calculated using the following equation: 
   

Detectionsboat Night UDetectionsboat Day U
StrategyDay Bomber Current Detectionsboat Day UFactorDay 

−+−
−

=    

 
A “night factor” is calculated in a similar fashion: 
 

Detectionsboat Night UDetectionsboat Day U
StrategyNight Bomber Current Detectionsboat Night UFactorNight 

−+−
−

=    

 
These factors essentially represent the new projected day and night strategies, based only 
on the number of U-boat detections during a given time period.  However, they must be 
scaled to each other, using this equation: 
 

FactorNight FactorDay 
FactorDay  Strategy Day  Projected
+

=  

 
This projected day strategy is combined with two other components from above, the day 
strategy average and the current day strategy, within a function weighted as previously 
mentioned.  This produces the new bomber day strategy.  The new bomber night strategy 
is simply 1 – Projected Day Strategy, since the strategies must sum to one.  The projected 
day strategy for the U-boats is calculated in a like manner, except there are three day and 
three night factors, one for each of the three inputs to the U-boat algorithm.  The three 
day factors are combined into an overall day factor using a weighted sum, with the 
weights chosen by the author based upon the relevance of the backing input to the overall 
determination of strategy.  For example, since the possibility of a U-boat sighting an 
aircraft was small, the aircraft detected day factor only receives a weight of 0.2: 
 

factor)day  detected boats-U*(0.4factor)day  killed boats-U*(0.4factor)day  sightedaircraft *(0.2 Factor Day ++=  
 
The overall U-boat night factor is calculated likewise. 
 
 Both sides have special considerations for their respective algorithm.  For 
example, if the aircraft are operating at a pure search strategy, then how do the Allies 
know if any U-boats are surfacing at the other time period?  This state tends to remain at 
a pure strategy, because no U-boats are being detected at the opposite time period, ever.  
In order to avoid this pitfall, code was added so that if the Allies are searching at a pure 
strategy, during the next strategy update the algorithm adjusts the strategy such that the 
aircraft are searching (0.5, 0.5) for the next time increment automatically.  The aircraft 



 58

algorithm, if no U-boats are detected for an entire time increment, automatically switches 
the day strategy and the night strategy to find a possible time that the U-boats may be 
exploiting for surfacing. 
 
   The main difference between the aircraft and the U-boat algorithms lies in 
purpose.  The aircraft algorithm attempts to find and adapt towards the opponent’s 
strategy, while the U-boat algorithm attempts to stay away from the opponent’s strategy.  
As such, the U-boat algorithm has several unique features to encourage this behavior.  
For example, if there are no U-boat detections or U-boat kills for a time increment, then 
the U-boat strategy will not change at all.  Also, based upon average numbers of U-boat 
detections and kills from Scenario One, a detection threshold and a kill threshold are in 
place so that if the current U-boat strategy is at or near a pure strategy, and the U-boat 
detections and kills are under these thresholds, then the U-boat strategy will not change 
for the next time increment. 
 
 
Lessons Learned – JAVA, Multi-Agent Systems, and Windows 
 
 The biggest problem the author encountered during the coding and execution of 
the modified model was a problem resulting from the way JAVA executes on a Windows 
system.  It was found that the run time for twenty replications at a design point would 
take anywhere from two to four days to accomplish.  During this long run time, it was 
discovered that the central processing unit (CPU) of the computer would be operating 
between 94 and 100 percent.  Over time, such as into the tenth replication, this extreme 
usage of the processor would eventually slow the computer down and the program would 
advance simulated time at a very slow pace. 
 After one of these runs at a design point with opposing pure strategies, results 
appeared which did not match up with what should have happened.  For example, with 
opposing pure strategies, there should be no U-boat detections at all.  However, the 
output reported differently, finding U-boats in many of the replications.  After many 
weeks of painstaking scrutiny of the code looking for a phantom “bug” which may have 
caused this problem, the real problem was discovered. 

In JAVA, every agent has its own thread, and the execution of a program with 
many threads is accomplished by multithreading.  With a Windows Operating System, 
each thread is given a portion of execution time with the processor called a quantum, and 
this process is known as timeslicing.  It was discovered that when the simulation was 
monitored during a run and paused every once in a while, the system never bogged down 
and no problems with the output data were seen.  Thus it was hypothesized that when the 
CPU becomes overloaded with threads during the long runs, something happens to foul 
up the proper timeslicing and so some threads are given multiple turns before others get 
to have their turn.  This explained the erroneous data. 

To correct for this, code was added to the model that forced the model to pause 
for a set time (1 minute) between each replication.  This pause allows the CPU to rest and 
for expended threads to be collected by the system and dumped.  After implementation of 
the pause code, not only was there no more incorrect output, but the time in which a 



 59

design point was accomplished decreased dramatically, from 2-4 days to 12-13 hours.  It 
is a good tip for others modeling large complex systems to be aware of how your 
program is running on the computer and what the program is doing to the memory and 
the processor capabilities. 
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Appendix B: Data 
 

 
Scenario 1: 
 

Aircraft U-boat Total Day Night Aircraft U-boat Total Day Night
1 (1, 0) (1, 0) 273 273 0 3 (1, 0) (0, 1) 0 0 0
1 (1, 0) (1, 0) 239 239 0 3 (1, 0) (0, 1) 0 0 0
1 (1, 0) (1, 0) 280 280 0 3 (1, 0) (0, 1) 0 0 0
1 (1, 0) (1, 0) 252 252 0 3 (1, 0) (0, 1) 0 0 0
1 (1, 0) (1, 0) 277 277 0 3 (1, 0) (0, 1) 0 0 0
1 (1, 0) (1, 0) 289 289 0 3 (1, 0) (0, 1) 0 0 0
1 (1, 0) (1, 0) 305 305 0 3 (1, 0) (0, 1) 0 0 0
1 (1, 0) (1, 0) 275 275 0 3 (1, 0) (0, 1) 0 0 0
1 (1, 0) (1, 0) 262 262 0 3 (1, 0) (0, 1) 0 0 0
1 (1, 0) (1, 0) 272 272 0 3 (1, 0) (0, 1) 0 0 0
1 (1, 0) (1, 0) 284 284 0 3 (1, 0) (0, 1) 0 0 0
1 (1, 0) (1, 0) 275 275 0 3 (1, 0) (0, 1) 0 0 0
1 (1, 0) (1, 0) 283 283 0 3 (1, 0) (0, 1) 0 0 0
1 (1, 0) (1, 0) 259 259 0 3 (1, 0) (0, 1) 0 0 0
1 (1, 0) (1, 0) 292 292 0 3 (1, 0) (0, 1) 0 0 0
1 (1, 0) (1, 0) 297 297 0 3 (1, 0) (0, 1) 0 0 0
1 (1, 0) (1, 0) 252 252 0 3 (1, 0) (0, 1) 0 0 0
1 (1, 0) (1, 0) 263 263 0 3 (1, 0) (0, 1) 0 0 0
1 (1, 0) (1, 0) 294 294 0 3 (1, 0) (0, 1) 0 0 0
1 (1, 0) (1, 0) 279 279 0 3 (1, 0) (0, 1) 0 0 0
2 (1, 0) (0.5, 0.5) 212 212 0 4 (0, 1) (0, 1) 781 0 781
2 (1, 0) (0.5, 0.5) 241 241 0 4 (0, 1) (0, 1) 709 0 709
2 (1, 0) (0.5, 0.5) 231 231 0 4 (0, 1) (0, 1) 754 0 754
2 (1, 0) (0.5, 0.5) 223 223 0 4 (0, 1) (0, 1) 807 0 807
2 (1, 0) (0.5, 0.5) 194 194 0 4 (0, 1) (0, 1) 792 0 792
2 (1, 0) (0.5, 0.5) 211 211 0 4 (0, 1) (0, 1) 688 0 688
2 (1, 0) (0.5, 0.5) 233 233 0 4 (0, 1) (0, 1) 733 0 733
2 (1, 0) (0.5, 0.5) 227 227 0 4 (0, 1) (0, 1) 741 0 741
2 (1, 0) (0.5, 0.5) 224 224 0 4 (0, 1) (0, 1) 723 0 723
2 (1, 0) (0.5, 0.5) 228 228 0 4 (0, 1) (0, 1) 717 0 717
2 (1, 0) (0.5, 0.5) 245 245 0 4 (0, 1) (0, 1) 795 0 795
2 (1, 0) (0.5, 0.5) 245 245 0 4 (0, 1) (0, 1) 806 0 806
2 (1, 0) (0.5, 0.5) 246 246 0 4 (0, 1) (0, 1) 779 0 779
2 (1, 0) (0.5, 0.5) 234 234 0 4 (0, 1) (0, 1) 726 0 726
2 (1, 0) (0.5, 0.5) 228 228 0 4 (0, 1) (0, 1) 818 0 818
2 (1, 0) (0.5, 0.5) 236 236 0 4 (0, 1) (0, 1) 772 0 772
2 (1, 0) (0.5, 0.5) 257 257 0 4 (0, 1) (0, 1) 659 0 659
2 (1, 0) (0.5, 0.5) 248 248 0 4 (0, 1) (0, 1) 786 0 786
2 (1, 0) (0.5, 0.5) 265 265 0 4 (0, 1) (0, 1) 651 0 651
2 (1, 0) (0.5, 0.5) 241 241 0 4 (0, 1) (0, 1) 698 0 698
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Aircraft U-boat Total Day Night Aircraft U-boat Total Day Night
5 (0.5, 0.5) (1, 0) 78 78 0 7 (0.5, 0.5) (0, 1) 121 0 121
5 (0.5, 0.5) (1, 0) 79 79 0 7 (0.5, 0.5) (0, 1) 163 0 163
5 (0.5, 0.5) (1, 0) 75 75 0 7 (0.5, 0.5) (0, 1) 159 0 159
5 (0.5, 0.5) (1, 0) 76 76 0 7 (0.5, 0.5) (0, 1) 150 0 150
5 (0.5, 0.5) (1, 0) 88 88 0 7 (0.5, 0.5) (0, 1) 151 0 151
5 (0.5, 0.5) (1, 0) 78 78 0 7 (0.5, 0.5) (0, 1) 164 0 164
5 (0.5, 0.5) (1, 0) 81 81 0 7 (0.5, 0.5) (0, 1) 140 0 140
5 (0.5, 0.5) (1, 0) 68 68 0 7 (0.5, 0.5) (0, 1) 129 0 129
5 (0.5, 0.5) (1, 0) 84 84 0 7 (0.5, 0.5) (0, 1) 131 0 131
5 (0.5, 0.5) (1, 0) 72 72 0 7 (0.5, 0.5) (0, 1) 134 0 134
5 (0.5, 0.5) (1, 0) 75 75 0 7 (0.5, 0.5) (0, 1) 152 0 152
5 (0.5, 0.5) (1, 0) 84 84 0 7 (0.5, 0.5) (0, 1) 154 0 154
5 (0.5, 0.5) (1, 0) 72 72 0 7 (0.5, 0.5) (0, 1) 155 0 155
5 (0.5, 0.5) (1, 0) 73 73 0 7 (0.5, 0.5) (0, 1) 151 0 151
5 (0.5, 0.5) (1, 0) 70 70 0 7 (0.5, 0.5) (0, 1) 151 0 151
5 (0.5, 0.5) (1, 0) 88 88 0 7 (0.5, 0.5) (0, 1) 141 0 141
5 (0.5, 0.5) (1, 0) 86 86 0 7 (0.5, 0.5) (0, 1) 144 0 144
5 (0.5, 0.5) (1, 0) 64 64 0 7 (0.5, 0.5) (0, 1) 163 0 163
5 (0.5, 0.5) (1, 0) 76 76 0 7 (0.5, 0.5) (0, 1) 125 0 125
5 (0.5, 0.5) (1, 0) 82 82 0 7 (0.5, 0.5) (0, 1) 146 0 146
6 (0.5, 0.5) (0.5, 0.5) 263 142 121 8 (0, 1) (1, 0) 0 0 0
6 (0.5, 0.5) (0.5, 0.5) 273 150 123 8 (0, 1) (1, 0) 0 0 0
6 (0.5, 0.5) (0.5, 0.5) 270 146 124 8 (0, 1) (1, 0) 0 0 0
6 (0.5, 0.5) (0.5, 0.5) 230 127 103 8 (0, 1) (1, 0) 0 0 0
6 (0.5, 0.5) (0.5, 0.5) 274 137 137 8 (0, 1) (1, 0) 0 0 0
6 (0.5, 0.5) (0.5, 0.5) 275 160 115 8 (0, 1) (1, 0) 0 0 0
6 (0.5, 0.5) (0.5, 0.5) 263 147 116 8 (0, 1) (1, 0) 0 0 0
6 (0.5, 0.5) (0.5, 0.5) 300 166 134 8 (0, 1) (1, 0) 0 0 0
6 (0.5, 0.5) (0.5, 0.5) 299 162 137 8 (0, 1) (1, 0) 0 0 0
6 (0.5, 0.5) (0.5, 0.5) 275 166 109 8 (0, 1) (1, 0) 0 0 0
6 (0.5, 0.5) (0.5, 0.5) 273 149 124 8 (0, 1) (1, 0) 0 0 0
6 (0.5, 0.5) (0.5, 0.5) 260 152 108 8 (0, 1) (1, 0) 0 0 0
6 (0.5, 0.5) (0.5, 0.5) 242 129 113 8 (0, 1) (1, 0) 0 0 0
6 (0.5, 0.5) (0.5, 0.5) 284 150 134 8 (0, 1) (1, 0) 0 0 0
6 (0.5, 0.5) (0.5, 0.5) 262 159 103 8 (0, 1) (1, 0) 0 0 0
6 (0.5, 0.5) (0.5, 0.5) 301 186 115 8 (0, 1) (1, 0) 0 0 0
6 (0.5, 0.5) (0.5, 0.5) 270 150 120 8 (0, 1) (1, 0) 0 0 0
6 (0.5, 0.5) (0.5, 0.5) 284 144 140 8 (0, 1) (1, 0) 0 0 0
6 (0.5, 0.5) (0.5, 0.5) 292 164 128 8 (0, 1) (1, 0) 0 0 0
6 (0.5, 0.5) (0.5, 0.5) 286 160 126 8 (0, 1) (1, 0) 0 0 0
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Aircraft U-boat Total Day Night
9 (0, 1) (0.5, 0.5) 383 0 383
9 (0, 1) (0.5, 0.5) 365 0 365
9 (0, 1) (0.5, 0.5) 358 0 358
9 (0, 1) (0.5, 0.5) 361 0 361
9 (0, 1) (0.5, 0.5) 378 0 378
9 (0, 1) (0.5, 0.5) 379 0 379
9 (0, 1) (0.5, 0.5) 342 0 342
9 (0, 1) (0.5, 0.5) 385 0 385
9 (0, 1) (0.5, 0.5) 372 0 372
9 (0, 1) (0.5, 0.5) 447 0 447
9 (0, 1) (0.5, 0.5) 411 0 411
9 (0, 1) (0.5, 0.5) 332 0 332
9 (0, 1) (0.5, 0.5) 424 0 424
9 (0, 1) (0.5, 0.5) 362 0 362
9 (0, 1) (0.5, 0.5) 372 0 372
9 (0, 1) (0.5, 0.5) 396 0 396
9 (0, 1) (0.5, 0.5) 375 0 375
9 (0, 1) (0.5, 0.5) 337 0 337
9 (0, 1) (0.5, 0.5) 384 0 384
9 (0, 1) (0.5, 0.5) 330 0 330
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Scenario 2A: 

 
 

Detections Detections
Aircraft U-boat Total Aircraft U-boat Total

1 (1, 0) (1, 0) 114 3 (1, 0) (0, 1) 147
1 (1, 0) (1, 0) 102 3 (1, 0) (0, 1) 161
1 (1, 0) (1, 0) 100 3 (1, 0) (0, 1) 163
1 (1, 0) (1, 0) 89 3 (1, 0) (0, 1) 177
1 (1, 0) (1, 0) 107 3 (1, 0) (0, 1) 146
1 (1, 0) (1, 0) 118 3 (1, 0) (0, 1) 172
1 (1, 0) (1, 0) 111 3 (1, 0) (0, 1) 187
1 (1, 0) (1, 0) 104 3 (1, 0) (0, 1) 166
1 (1, 0) (1, 0) 94 3 (1, 0) (0, 1) 173
1 (1, 0) (1, 0) 101 3 (1, 0) (0, 1) 185
1 (1, 0) (1, 0) 90 3 (1, 0) (0, 1) 183
1 (1, 0) (1, 0) 110 3 (1, 0) (0, 1) 178
1 (1, 0) (1, 0) 97 3 (1, 0) (0, 1) 175
1 (1, 0) (1, 0) 105 3 (1, 0) (0, 1) 172
1 (1, 0) (1, 0) 109 3 (1, 0) (0, 1) 152
1 (1, 0) (1, 0) 113 3 (1, 0) (0, 1) 165
1 (1, 0) (1, 0) 97 3 (1, 0) (0, 1) 205
1 (1, 0) (1, 0) 103 3 (1, 0) (0, 1) 182
1 (1, 0) (1, 0) 108 3 (1, 0) (0, 1) 160
1 (1, 0) (1, 0) 102 3 (1, 0) (0, 1) 185
2 (1, 0) (0.5, 0.5) 120 4 (0, 1) (0, 1) 212
2 (1, 0) (0.5, 0.5) 90 4 (0, 1) (0, 1) 220
2 (1, 0) (0.5, 0.5) 126 4 (0, 1) (0, 1) 246
2 (1, 0) (0.5, 0.5) 93 4 (0, 1) (0, 1) 212
2 (1, 0) (0.5, 0.5) 110 4 (0, 1) (0, 1) 245
2 (1, 0) (0.5, 0.5) 111 4 (0, 1) (0, 1) 216
2 (1, 0) (0.5, 0.5) 105 4 (0, 1) (0, 1) 225
2 (1, 0) (0.5, 0.5) 94 4 (0, 1) (0, 1) 210
2 (1, 0) (0.5, 0.5) 97 4 (0, 1) (0, 1) 252
2 (1, 0) (0.5, 0.5) 109 4 (0, 1) (0, 1) 182
2 (1, 0) (0.5, 0.5) 90 4 (0, 1) (0, 1) 208
2 (1, 0) (0.5, 0.5) 97 4 (0, 1) (0, 1) 249
2 (1, 0) (0.5, 0.5) 84 4 (0, 1) (0, 1) 212
2 (1, 0) (0.5, 0.5) 119 4 (0, 1) (0, 1) 206
2 (1, 0) (0.5, 0.5) 90 4 (0, 1) (0, 1) 225
2 (1, 0) (0.5, 0.5) 93 4 (0, 1) (0, 1) 245
2 (1, 0) (0.5, 0.5) 100 4 (0, 1) (0, 1) 241
2 (1, 0) (0.5, 0.5) 103 4 (0, 1) (0, 1) 240
2 (1, 0) (0.5, 0.5) 113 4 (0, 1) (0, 1) 218
2 (1, 0) (0.5, 0.5) 90 4 (0, 1) (0, 1) 236
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Detections Detections
Aircraft U-boat Total Aircraft U-boat Total

5 (0.5, 0.5) (1, 0) 98 7 (0.5, 0.5) (0, 1) 210
5 (0.5, 0.5) (1, 0) 107 7 (0.5, 0.5) (0, 1) 218
5 (0.5, 0.5) (1, 0) 98 7 (0.5, 0.5) (0, 1) 184
5 (0.5, 0.5) (1, 0) 104 7 (0.5, 0.5) (0, 1) 259
5 (0.5, 0.5) (1, 0) 104 7 (0.5, 0.5) (0, 1) 202
5 (0.5, 0.5) (1, 0) 95 7 (0.5, 0.5) (0, 1) 233
5 (0.5, 0.5) (1, 0) 104 7 (0.5, 0.5) (0, 1) 189
5 (0.5, 0.5) (1, 0) 95 7 (0.5, 0.5) (0, 1) 198
5 (0.5, 0.5) (1, 0) 117 7 (0.5, 0.5) (0, 1) 222
5 (0.5, 0.5) (1, 0) 92 7 (0.5, 0.5) (0, 1) 241
5 (0.5, 0.5) (1, 0) 93 7 (0.5, 0.5) (0, 1) 212
5 (0.5, 0.5) (1, 0) 102 7 (0.5, 0.5) (0, 1) 189
5 (0.5, 0.5) (1, 0) 97 7 (0.5, 0.5) (0, 1) 195
5 (0.5, 0.5) (1, 0) 106 7 (0.5, 0.5) (0, 1) 215
5 (0.5, 0.5) (1, 0) 108 7 (0.5, 0.5) (0, 1) 223
5 (0.5, 0.5) (1, 0) 109 7 (0.5, 0.5) (0, 1) 231
5 (0.5, 0.5) (1, 0) 113 7 (0.5, 0.5) (0, 1) 209
5 (0.5, 0.5) (1, 0) 93 7 (0.5, 0.5) (0, 1) 211
5 (0.5, 0.5) (1, 0) 95 7 (0.5, 0.5) (0, 1) 200
5 (0.5, 0.5) (1, 0) 93 7 (0.5, 0.5) (0, 1) 168
6 (0.5, 0.5) (0.5, 0.5) 102 8 (0, 1) (1, 0) 94
6 (0.5, 0.5) (0.5, 0.5) 104 8 (0, 1) (1, 0) 88
6 (0.5, 0.5) (0.5, 0.5) 106 8 (0, 1) (1, 0) 103
6 (0.5, 0.5) (0.5, 0.5) 114 8 (0, 1) (1, 0) 81
6 (0.5, 0.5) (0.5, 0.5) 110 8 (0, 1) (1, 0) 92
6 (0.5, 0.5) (0.5, 0.5) 98 8 (0, 1) (1, 0) 95
6 (0.5, 0.5) (0.5, 0.5) 91 8 (0, 1) (1, 0) 99
6 (0.5, 0.5) (0.5, 0.5) 85 8 (0, 1) (1, 0) 94
6 (0.5, 0.5) (0.5, 0.5) 106 8 (0, 1) (1, 0) 89
6 (0.5, 0.5) (0.5, 0.5) 126 8 (0, 1) (1, 0) 83
6 (0.5, 0.5) (0.5, 0.5) 104 8 (0, 1) (1, 0) 77
6 (0.5, 0.5) (0.5, 0.5) 105 8 (0, 1) (1, 0) 101
6 (0.5, 0.5) (0.5, 0.5) 117 8 (0, 1) (1, 0) 87
6 (0.5, 0.5) (0.5, 0.5) 109 8 (0, 1) (1, 0) 99
6 (0.5, 0.5) (0.5, 0.5) 97 8 (0, 1) (1, 0) 89
6 (0.5, 0.5) (0.5, 0.5) 101 8 (0, 1) (1, 0) 92
6 (0.5, 0.5) (0.5, 0.5) 102 8 (0, 1) (1, 0) 78
6 (0.5, 0.5) (0.5, 0.5) 79 8 (0, 1) (1, 0) 101
6 (0.5, 0.5) (0.5, 0.5) 101 8 (0, 1) (1, 0) 104
6 (0.5, 0.5) (0.5, 0.5) 151 8 (0, 1) (1, 0) 86
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Detections
Aircraft U-boat Total

9 (0, 1) (0.5, 0.5) 116
9 (0, 1) (0.5, 0.5) 101
9 (0, 1) (0.5, 0.5) 105
9 (0, 1) (0.5, 0.5) 109
9 (0, 1) (0.5, 0.5) 125
9 (0, 1) (0.5, 0.5) 116
9 (0, 1) (0.5, 0.5) 109
9 (0, 1) (0.5, 0.5) 116
9 (0, 1) (0.5, 0.5) 121
9 (0, 1) (0.5, 0.5) 115
9 (0, 1) (0.5, 0.5) 105
9 (0, 1) (0.5, 0.5) 114
9 (0, 1) (0.5, 0.5) 110
9 (0, 1) (0.5, 0.5) 118
9 (0, 1) (0.5, 0.5) 102
9 (0, 1) (0.5, 0.5) 117
9 (0, 1) (0.5, 0.5) 101
9 (0, 1) (0.5, 0.5) 115
9 (0, 1) (0.5, 0.5) 123
9 (0, 1) (0.5, 0.5) 116
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Scenario 2B: 
 
 

Detections Detections
Aircraft U-boat Total Aircraft U-boat Total

1 (1, 0) (1, 0) 25 3 (1, 0) (0, 1) 0
1 (1, 0) (1, 0) 14 3 (1, 0) (0, 1) 0
1 (1, 0) (1, 0) 16 3 (1, 0) (0, 1) 0
1 (1, 0) (1, 0) 18 3 (1, 0) (0, 1) 0
1 (1, 0) (1, 0) 25 3 (1, 0) (0, 1) 0
1 (1, 0) (1, 0) 20 3 (1, 0) (0, 1) 0
1 (1, 0) (1, 0) 21 3 (1, 0) (0, 1) 0
1 (1, 0) (1, 0) 19 3 (1, 0) (0, 1) 0
1 (1, 0) (1, 0) 19 3 (1, 0) (0, 1) 0
1 (1, 0) (1, 0) 16 3 (1, 0) (0, 1) 0
1 (1, 0) (1, 0) 12 3 (1, 0) (0, 1) 0
1 (1, 0) (1, 0) 19 3 (1, 0) (0, 1) 0
1 (1, 0) (1, 0) 17 3 (1, 0) (0, 1) 0
1 (1, 0) (1, 0) 97 3 (1, 0) (0, 1) 0
1 (1, 0) (1, 0) 18 3 (1, 0) (0, 1) 0
1 (1, 0) (1, 0) 12 3 (1, 0) (0, 1) 0
1 (1, 0) (1, 0) 14 3 (1, 0) (0, 1) 0
1 (1, 0) (1, 0) 23 3 (1, 0) (0, 1) 0
1 (1, 0) (1, 0) 14 3 (1, 0) (0, 1) 0
1 (1, 0) (1, 0) 23 3 (1, 0) (0, 1) 0
2 (1, 0) (0.5, 0.5) 17 4 (0, 1) (0, 1) 23
2 (1, 0) (0.5, 0.5) 11 4 (0, 1) (0, 1) 34
2 (1, 0) (0.5, 0.5) 20 4 (0, 1) (0, 1) 22
2 (1, 0) (0.5, 0.5) 17 4 (0, 1) (0, 1) 33
2 (1, 0) (0.5, 0.5) 12 4 (0, 1) (0, 1) 33
2 (1, 0) (0.5, 0.5) 16 4 (0, 1) (0, 1) 24
2 (1, 0) (0.5, 0.5) 10 4 (0, 1) (0, 1) 22
2 (1, 0) (0.5, 0.5) 13 4 (0, 1) (0, 1) 25
2 (1, 0) (0.5, 0.5) 8 4 (0, 1) (0, 1) 27
2 (1, 0) (0.5, 0.5) 19 4 (0, 1) (0, 1) 23
2 (1, 0) (0.5, 0.5) 15 4 (0, 1) (0, 1) 36
2 (1, 0) (0.5, 0.5) 16 4 (0, 1) (0, 1) 28
2 (1, 0) (0.5, 0.5) 14 4 (0, 1) (0, 1) 30
2 (1, 0) (0.5, 0.5) 10 4 (0, 1) (0, 1) 34
2 (1, 0) (0.5, 0.5) 15 4 (0, 1) (0, 1) 26
2 (1, 0) (0.5, 0.5) 9 4 (0, 1) (0, 1) 28
2 (1, 0) (0.5, 0.5) 8 4 (0, 1) (0, 1) 37
2 (1, 0) (0.5, 0.5) 11 4 (0, 1) (0, 1) 25
2 (1, 0) (0.5, 0.5) 15 4 (0, 1) (0, 1) 24
2 (1, 0) (0.5, 0.5) 10 4 (0, 1) (0, 1) 25
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Detections Detections
Aircraft U-boat Total Aircraft U-boat Total

5 (0.5, 0.5) (1, 0) 75 7 (0.5, 0.5) (0, 1) 66
5 (0.5, 0.5) (1, 0) 120 7 (0.5, 0.5) (0, 1) 110
5 (0.5, 0.5) (1, 0) 90 7 (0.5, 0.5) (0, 1) 90
5 (0.5, 0.5) (1, 0) 107 7 (0.5, 0.5) (0, 1) 103
5 (0.5, 0.5) (1, 0) 109 7 (0.5, 0.5) (0, 1) 111
5 (0.5, 0.5) (1, 0) 98 7 (0.5, 0.5) (0, 1) 114
5 (0.5, 0.5) (1, 0) 99 7 (0.5, 0.5) (0, 1) 107
5 (0.5, 0.5) (1, 0) 85 7 (0.5, 0.5) (0, 1) 106
5 (0.5, 0.5) (1, 0) 92 7 (0.5, 0.5) (0, 1) 91
5 (0.5, 0.5) (1, 0) 95 7 (0.5, 0.5) (0, 1) 111
5 (0.5, 0.5) (1, 0) 111 7 (0.5, 0.5) (0, 1) 115
5 (0.5, 0.5) (1, 0) 104 7 (0.5, 0.5) (0, 1) 112
5 (0.5, 0.5) (1, 0) 99 7 (0.5, 0.5) (0, 1) 102
5 (0.5, 0.5) (1, 0) 109 7 (0.5, 0.5) (0, 1) 120
5 (0.5, 0.5) (1, 0) 87 7 (0.5, 0.5) (0, 1) 81
5 (0.5, 0.5) (1, 0) 95 7 (0.5, 0.5) (0, 1) 111
5 (0.5, 0.5) (1, 0) 78 7 (0.5, 0.5) (0, 1) 114
5 (0.5, 0.5) (1, 0) 93 7 (0.5, 0.5) (0, 1) 89
5 (0.5, 0.5) (1, 0) 85 7 (0.5, 0.5) (0, 1) 104
5 (0.5, 0.5) (1, 0) 118 7 (0.5, 0.5) (0, 1) 101
6 (0.5, 0.5) (0.5, 0.5) 112 8 (0, 1) (1, 0) 0
6 (0.5, 0.5) (0.5, 0.5) 112 8 (0, 1) (1, 0) 0
6 (0.5, 0.5) (0.5, 0.5) 106 8 (0, 1) (1, 0) 0
6 (0.5, 0.5) (0.5, 0.5) 101 8 (0, 1) (1, 0) 0
6 (0.5, 0.5) (0.5, 0.5) 137 8 (0, 1) (1, 0) 0
6 (0.5, 0.5) (0.5, 0.5) 100 8 (0, 1) (1, 0) 0
6 (0.5, 0.5) (0.5, 0.5) 92 8 (0, 1) (1, 0) 0
6 (0.5, 0.5) (0.5, 0.5) 91 8 (0, 1) (1, 0) 0
6 (0.5, 0.5) (0.5, 0.5) 117 8 (0, 1) (1, 0) 0
6 (0.5, 0.5) (0.5, 0.5) 113 8 (0, 1) (1, 0) 0
6 (0.5, 0.5) (0.5, 0.5) 95 8 (0, 1) (1, 0) 0
6 (0.5, 0.5) (0.5, 0.5) 117 8 (0, 1) (1, 0) 0
6 (0.5, 0.5) (0.5, 0.5) 111 8 (0, 1) (1, 0) 0
6 (0.5, 0.5) (0.5, 0.5) 111 8 (0, 1) (1, 0) 0
6 (0.5, 0.5) (0.5, 0.5) 101 8 (0, 1) (1, 0) 0
6 (0.5, 0.5) (0.5, 0.5) 116 8 (0, 1) (1, 0) 0
6 (0.5, 0.5) (0.5, 0.5) 114 8 (0, 1) (1, 0) 0
6 (0.5, 0.5) (0.5, 0.5) 128 8 (0, 1) (1, 0) 0
6 (0.5, 0.5) (0.5, 0.5) 126 8 (0, 1) (1, 0) 0
6 (0.5, 0.5) (0.5, 0.5) 119 8 (0, 1) (1, 0) 0
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Detections
Aircraft U-boat Total

9 (0, 1) (0.5, 0.5) 159
9 (0, 1) (0.5, 0.5) 156
9 (0, 1) (0.5, 0.5) 151
9 (0, 1) (0.5, 0.5) 179
9 (0, 1) (0.5, 0.5) 159
9 (0, 1) (0.5, 0.5) 9
9 (0, 1) (0.5, 0.5) 142
9 (0, 1) (0.5, 0.5) 10
9 (0, 1) (0.5, 0.5) 150
9 (0, 1) (0.5, 0.5) 21
9 (0, 1) (0.5, 0.5) 13
9 (0, 1) (0.5, 0.5) 143
9 (0, 1) (0.5, 0.5) 158
9 (0, 1) (0.5, 0.5) 18
9 (0, 1) (0.5, 0.5) 167
9 (0, 1) (0.5, 0.5) 14
9 (0, 1) (0.5, 0.5) 8
9 (0, 1) (0.5, 0.5) 15
9 (0, 1) (0.5, 0.5) 153
9 (0, 1) (0.5, 0.5) 165
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